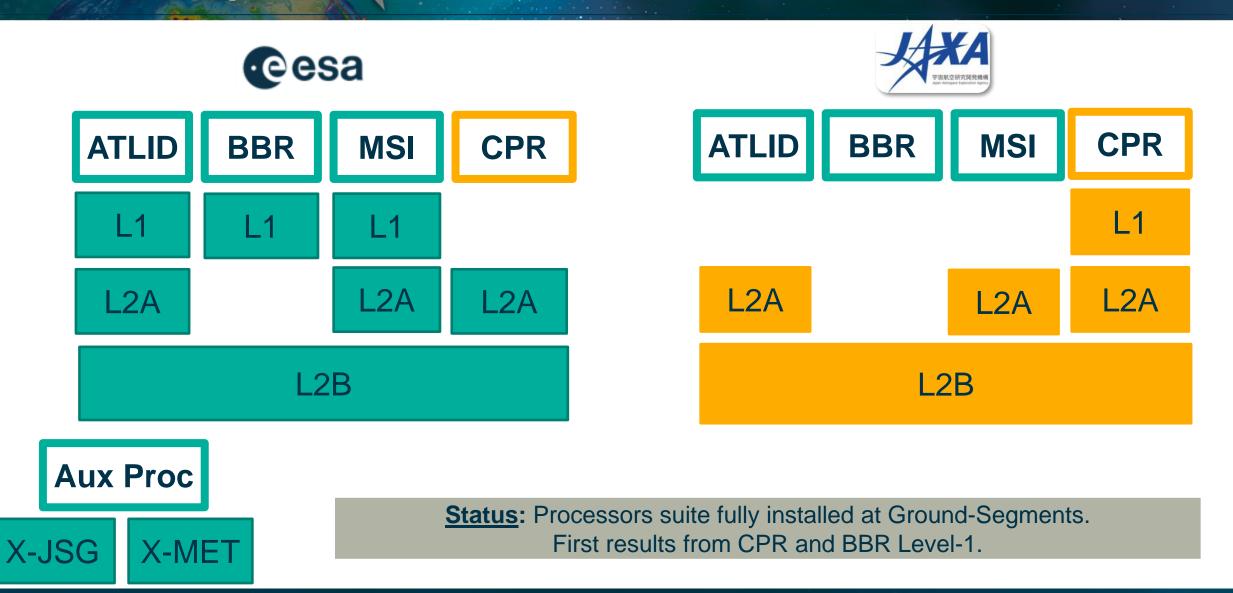
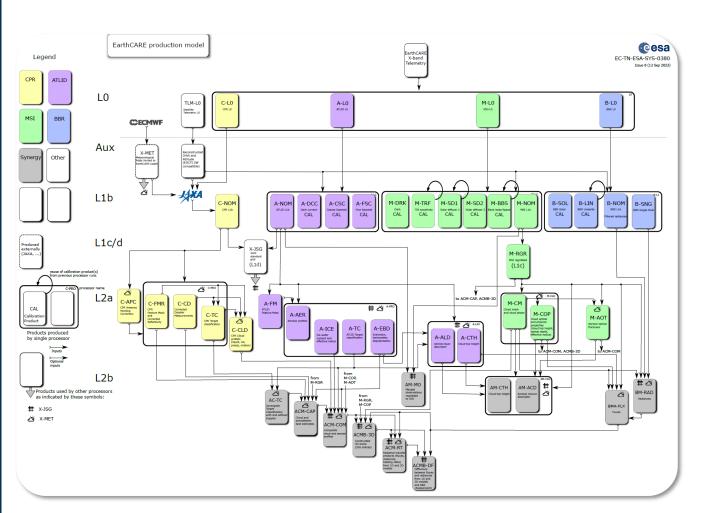


Latest Developments in EarthCARE's Processors and Products


Timon Hummel and the EarthCARE Team

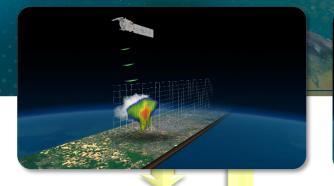
ESA UNCLASSIFIED – For ESA Official Use Only


EarthCARE processors

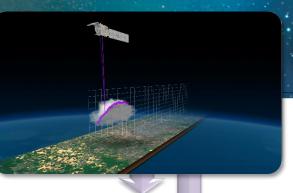
· 💳 💶 📲 💳 💶 📲 📲 💶 🗮 💳 📕 📕 💳 👭 💳 🚛 🚳 🛌 📲 👫 🛨 🔂 💳 🔛 😻 → THE EUROF

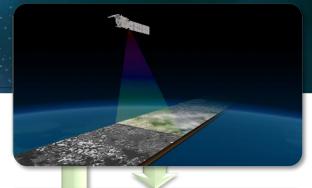
EarthCARE production model (ESA)

AMT special issue https://amt.copernicus.org/articles/special_issue1156.html Cloud-top, vertically integrated, layerwise A-TC Vertical profiles A-AER A-ALD Aerosol Aerosol Aerosol fraction A-ICE Aerosol layer height, classification Aerosol species A-EBD **Optical thickness**, Extinction Laver-mean extinction-to-backscatter ratio A-CTH Extinction-to-backscatter ratio Layer-mean particle linear depolarization ratio C-CLD Particle linear depolarization ratio Angstrom exponent C-TC M-CM Cloud and precipitation Cloud and precipitation M-COP Extinction Cloud-top height, phase, type M-AOT Effective radius Optical thickness Liquid, ice, rain water content AM-CTH Effective radius Snow rate, median diameter AM-ACD Liquid, ice, rain water pat Rain rate, drop size AC-TC Surface snow rate Cloud/precipitation fraction BM-RAD Surface rain rate Cloud/precipitation classification ACM-CAP ACM-COM Radiation Radiation ACM-RT **Radiative fluxes at TOA** Broadband radiances Broadband radiances at TOA BMA-FLX **Radiative fluxes**


- 2 Level-2 chains at ESA and JAXA
- 24 Data Processors (ESA chain) developed by Scientific Team (CARDINAL – P.I. : KNMI)
- Target data release dates after launch (L):

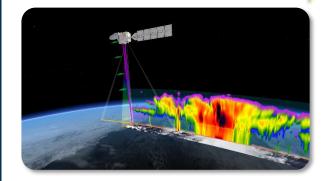
Level 1	Level 2a	Level 2b
L + 6 months	L + 9 months	L + 18 months
~Dec. 2024	~March 2025	~Dec. 2025


EarthCARE Cal/Val and Science Workshops ulletcoordinated along with the data release





CPR Level 2a Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...



ATLID Level 2a Feature mask and target classification, extinction, backscatter & depol. profiles, aerosol properties, ice cloud properties, ... MSI Level 2a Cloud mask, cloud microphysical parameters, cloud top height, aerosol parameters, ...

Synergistic Level 2b 1. Target classification 2. Cloud & aer. prof. at x-sec

EarthCARE Data Production Model

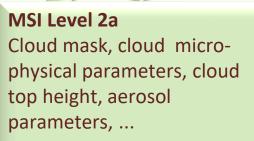
CPR Level 1b (JAXA) Radar reflectivity and Doppler velocity profiles

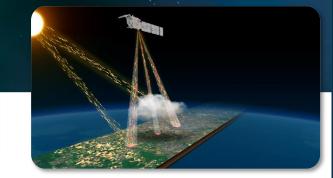
ATLID Level 1b (ESA) Attenuated backscatter in

Rayleigh channel

ATLID Level 2a

- Co-polar Mie channel
- Cross-polar Mie channel


Feature mask and target


classification, extinction,

backscatter & depol. profiles,

MSI Level 1b/c (ESA) TOA radiances for four solar channels, TOA brightness temperatures for three thermal channels

CPR Level 2a

Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

aerosol properties, ice cloud properties, ... **Synergistic Level 2b**

1. Target classification 2. Cloud & aer. prof. at x-sec

3D Scenes Construction Expand syn. retrievals acrosstrack using MSI; ≈40km wide

Radiative Transfer Products calculated radiances, fluxes, heating rate profiles

EarthCARE Data Production Model

CPR Level 1b (JAXA) Radar reflectivity and Doppler velocity profiles

ATLID Level 1b (ESA) Attenuated backscatter in

Rayleigh channel

ATLID Level 2a

properties, ...

Radiative '

calculated

heating rate profiles

Co-polar Mie channel

Feature mask and target

classification, extinction,

backscatter & depol. profiles,

aerosol properties, ice cloud

Cross-polar Mie channel

MSI Level 1b/c (ESA) TOA radiances for four solar channels, TOA brightness temperatures for three thermal channels

MSI Level 2a Cloud mask, cloud microphysical parameters, cloud top height, aerosol parameters, ...

BBR Level 2a Unfiltered top-of-atmosphere radiances, short-wave and long-wave fluxes **BBR Level 2b:** enhanced products using MSI

CPR Level 2a

Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

> Synergistic Level 2b 1. Target classification 2. Cloud & aer. prof. at x-sec

3D Scenes Construction Expand syn. retrievals acrosstrack using MSI; ≈40km wide

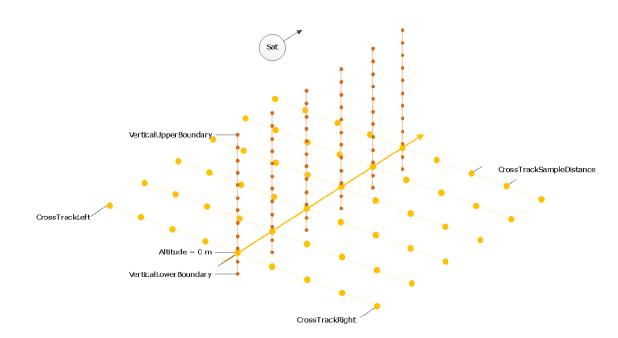
P6.10

EarthCARE Data Production Model

Assessment

Overview of the EarthCARE Cloud, Aerosol and Radiation science products.

Gerd-jan Van Zadelhoff KNMI

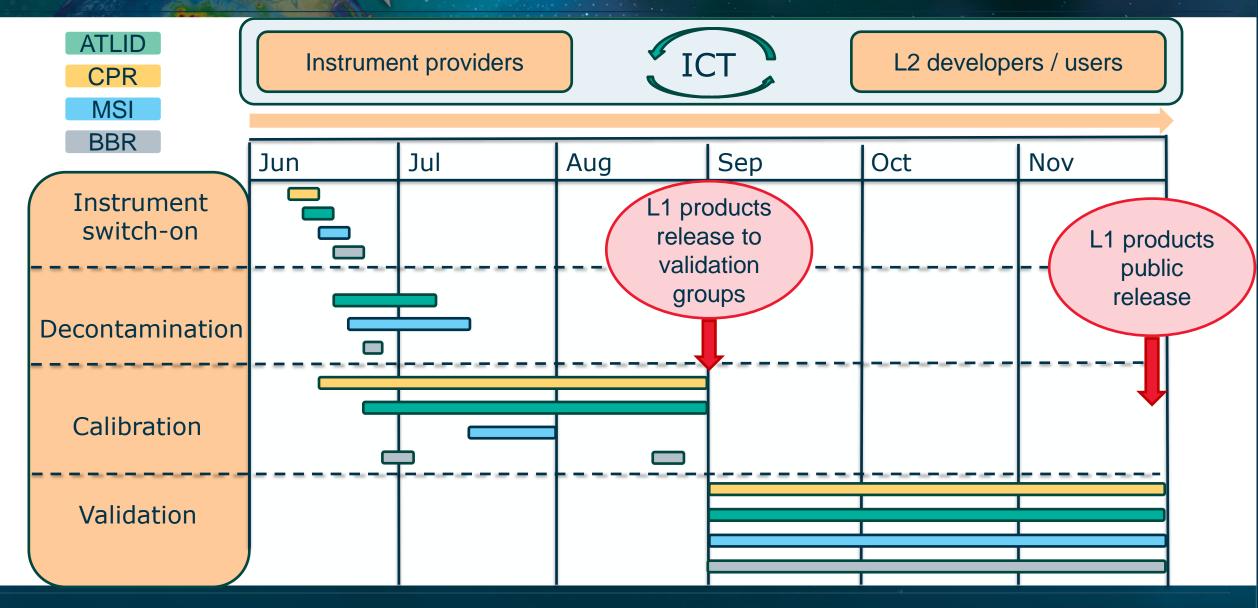

X-JSG: The Joint Standard Grid

- Spatial grid for use in EarthCARE synergy (L2b) processors and products
- Combination of two 2D grids ("inverted T") to define a 3D grid:
- Horizontal (along track, across track) and Vertical (along track, height)
- Grid is continuous (no gaps)

Processor input:

- Horizontal grid from CPR
- Vertical grid from ATLID

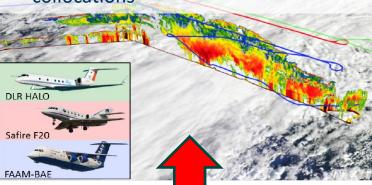
Status: Operational and continuously disseminated to the processing chain



- Meteorological parameters from ECMWF deterministic forecast runs for the EarthCARE swath and overpass time on the original model spatial grid.
- This allows a reduction of the data volume by a factor of about 15 compared to global fields (from 750 GB/day to 54 GB/day).
- Model parameters to be extracted to X-MET have been selected based on the needs of EarthCARE level 1 and level 2 processors. The list of model parameters is configurable.
- Some parameters in X-MET are derived from a combination of model parameters.
- Used in most EarthCARE data processors

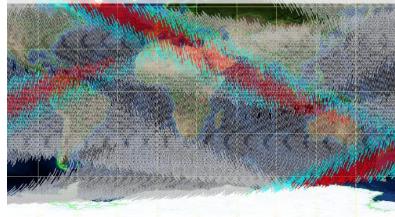
Status: Operational and continuously disseminated to the processing chain

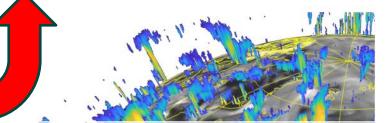
Status and Commissioning Timeline


ESA Validation Approaches

Parallel surface-based/network data acquisition, continuously, over the mission lifetime: slower collection of collocations but broader coverage of geophysical and meteorological conditions

From as early on as possible, underflights for L1 and L2 validation: rapid collection of numerous, precise collocations




Airborne Campaigns Satellite-Satellite

Networks

Assimilation

Intercomparison with satellites: semiglobal coverage (depending on orbits)

Systematic monitoring (including calibration drift detection) of radar and lidar data with NWP model, starting from launch

Conclusion

- Cloud, aerosol and radiation interaction are currently still one of the largest source of uncertainty in projections of the future climate.
- Synergy between L2 processors and L1 data streams will enable direct verification of the impact of clouds & aerosols on atmospheric heating rates and radiative fluxes.
- An extensive suite of Level-1 and Level-2 processors has been installed in ESA's ground segment, with currently ongoing commissioning activities for the instruments and processors.
- Level-1 data release is planned for December 2024, followed by Level-2a and two-sensor Level-2b products in March 2025, and three/four-sensor Level-2b products in December 2025.
- Continuous product validation approaches are being performed during and beyond the commissioning phase.

🚔 💶 📲 🚍 💶 📲 📕 🏣 📕 📕 🔤 👫 🚍 🛶 👰 🖕 📕 👫 💶 📰 🚾 📰 🖉 🛶 🔹 🗰 👘