

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

ERM4Radar-

Cloud Profiling for Satellite Validation

Lukas Pfitzenmaier¹, Annika Daehne¹, Pavlos Kollias^{1,2}, Salomon Eliasson³, Anke Thoss³, Leonardo Porcacchia³, Anca Nemuc⁴, Razvan Pirloaga⁴, Bogdan Antonescu⁴, Doina Nicolae⁴, Ewan O'Connor⁵, Jonas von Bismarck⁶, Timon Hummel⁷

1) University of Cologne, Germany

2) Stony Brook University, NY, USA

3) SMHI, Sweden 4) INOE, Romania 5) Finish Meteorological Institute, Finland 6) ESA / ESTEC 7) ESA / ESRIN

Objectives of the FRM4Radar Project

- Create the foundation for Fiducial Reference Measurements (FMR) for the EarthCARE Cloud Profiling Radar (CPR)
- The role of the FMR's is to deliver confidence to user community in the CPR products by means of ground-based observations
 - Quality check of data: C-FMR, C-CD,
 - Quality check of retrieval products: C-CT, C-CLD, C-PRO
- The EarthCARE CPR FMR is a 94-GHz radar network
 - Uses the same wavelength as the EarthCARE CPR
 - Closes geographical gaps of the European ground-based network
- Foster the development of new Cal/Val products
- Long term monitoring of the data over years

Cloudnet & FRM4Radar Network

XA Cesa

- Compliment the existing 94-GHz EU network and fill gaps in under sampled regions (Sweden & Romania)
 - Coverage of different cloud and climate regimes
- Instrumental synergy with ceilometer and microwave radiometer
 - Run 94-GHz version of Cloudnet (no microwave radiometer needed)
 - Improve Cloudnet coverage
 - · Validation of CPR retrievals
- Cloudnet: Cloud target classification algorithm (Illingworth, 2007, BAMS, Tukiainen et al., 2020, JOSS)

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

ACTRIS-CloudNet classification

- Cloudnet algorithm
 - Atmospheric target classification algorithm
 - Instrumental synergy
 - ✓ Radar
 - ✓ Microwave radiometer (89 GHz channel radar)
 - ✓ Ceilometer
 - Implementation of the FRM4Radar station into the Cloudnet/ACTRIS network
 - Standardized quality controlled data set
- ➤Collaboration with ACTRIS
 - Ze-monitoring
 - antenna miss-pointing

· e e sa

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

ACTRIS CloudNet classification

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Concept: Radar Ze-monitoring

AXA Cesa

- Total system calibration monitoring
- Based on Disdrometer radar reflectivity comparison method *

Kollias et al., 2019, AMT Myagkov et al., 2020, AMT Chellini, et al., 2022, JGR Atmos

Disdrometer:

optical particle counter **N(D)**

- Forward modeling of Ze based on measured N(D)
- Compare forward simulated Ze_dis to radar Ze

Radar:

Measures reflectivity (Ze) of all drops in volume

- Ze ~ N(D) D⁶
- Correction of Ze for attenuation
- Compare Ze to Ze_dis calculated from

Disdrometer measurements

Cooperation with ACTRIS to get a standard method

Example: Radar Ze-monitoring, JOYCE, 2019

Next project phase: Why the offset differs that much for different sites?

· e e sa

LXA

Concept: Antenna pointing correction

Doppler velocity is velocity component along the line of sight

- V_d = particle fall velo + air motion
- V_d = particle velo + air motion + hor wind contribution

LAXA

· e e sa

So V_d is a function of V_h , and of the miss-pointing angle ϕ Horizontal wind information from ECMWF IFS or retrieved from radar PPI scans

Example: Antenna pointing correction

90 days of Doppler velocity measurements and wind direction data (ECMWF IFS)

JAXA

Fit the model against the data set obtain ϕ : off zenith pointing angle obtain α : azimuth direction of ϕ

· e esa

Example: Antenna pointing correction

b) Correction of Dual Doppler velocities

LAXA

•eesa

Doppler velocity difference X/Ka should be 0 at cloud top Off-zenith poiting cause errors up to 0.15 m s⁻¹ After correction of each radar reduction to the X- band Doppler velocity resolution

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 - 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

CPR forward simulation tool

LAXA ·eesa

Motivation:

- Create data base for CPR Cal/Val
- Usage of existing long time data sets
- Easy usage -> python code (github)

INPUT: Ground based radar data:

- Readers ACTRIS, GEOMS, airplane radar (Polar5, RASTA)
- sites act as 'ground truth' for EarthCARE **CPR** simulations
- flexible satellite configuration
 - CloudSat
 - EarthCARE

Output: EarthCARE CPR view like data

- Validation of L1 with ground
- Creation of long term data sets

Results

- Lessens learned in radar and disdrometer operation
- Radar data processing (Matlab on github)
 > publication planned
- INOE radar part of ASKOS campaign at Cape Verde
 Data uploaded to EVDC
- Simulation tool to create synthetic EarthCARE CPR data
 > Release planed soon, latest till March 2024
- FRM4Radar method on its way to be implemented in ACTRIS cloud remote sensing processing
 - Ze-monitoring ACTRIS started the implementation
 - Antenna pointing monitoring work in progress

Cloud Radar in Cape Verde – ASKOS campaign 2021-2022

IAXA

Appendix: 94-GHz cloud radar processing code

- Post-processing of the 94-GHz radar data
 - Unfolding of the recorded Doppler spectra
 - Moment estimation: Ze, Vm, Sw and higher moments such as S_K and K
 - Estimation of LDR
 - Data output in GEOMS

a) Example folded Doppler velocity

Radar Quicklook browser / data archive

https://atmos.meteo.uni-koeln.de/~lpfitzen/dataBrowser/dataBrowser2.html