

3rd MedCyclones Workshop 15 - 17 July 2024 | ESA-ESRIN, Frascati (Rome), Italy

How does ocean-wave-atmosphere interaction affect Medicane intensity? A coupled model study based on lanos (2020)

J. Karagiorgos^{1,*}, V. Vervatis¹, I. Samos^{1,2}, H. Flocas¹, and S. Sofianos¹

¹Department of Physics, National and Kapodistrian University of Athens, Greece ²Hellenic National Meteorological Service, Greece

*mail: jkaragiorgos@phys.uoa.gr

Ocean provides heat energy to the cyclone (enthalpy heat fluxes)

Ocean

Cyclone provides mechanical energy to the ocean (wind forcing)

Medicane lanos (2020) Source: EOSDIS Worldview

- 1. The cyclone causes strong vertical mixing in the ocean
- 2. Cooling of the Sea Surface Temperature (SST)
- 3. Reduction of available energy in the cyclone
- 4. Negative feedback between cyclone and SST

Coupled model set-up (Karagiorgos et al., 2024):

- WRF: Δx , $\Delta y = 9 \text{ km} / \Delta t = 30 \text{ s}$ IC/BC: 3-h ECMWF IFS forecasts
- NEMO: Δx , $\Delta y = ~7-9 \text{ km} / \Delta t = 360 \text{ s}$ IC/BC: GLORYS12 daily reanalysis
- WaveWatch 3: Common mesh with NEMO | $\Delta t = 720$ s
- Coupler OASIS: WRF ↔ NEMO: 6 min; WW3: 12 min

Coupled model set-up (Karagiorgos et al., 2024):

- WRF: Δx , $\Delta y = 9 \text{ km} / \Delta t = 30 \text{ s}$ IC/BC: 3-h ECMWF IFS forecasts
- NEMO: Δx , $\Delta y = ~7-9 \text{ km} / \Delta t = 360 \text{ s}$ IC/BC: GLORYS12 daily reanalysis
- WaveWatch 3: Common mesh with NEMO | $\Delta t = 720$ s
- Coupler OASIS: WRF ←→ NEMO: 6 min; WW3: 12 min

Medicane lanos (15-20 Sep 2020):

- Atm-only: Fixed initial SST throughout the simulations.
- **OA:** WRF and NEMO models are 2-way coupled.
- **OWA:** Added WW3 to OA; Wave effects on surface roughness & wave-current interactions.

Sensitivity runs to initialization time: 16/00 UTC and 17/00 UTC.

Regarding wave coupling processes

Wave-atmosphere

• Momentum roughness length:

 $z_0(sea) = \frac{\alpha_{ch}u_*^2}{g} + \frac{0.11v}{u_*}$ Charnock parameter α_{ch} : Atm-only & OA: $\alpha_{ch} = 0.0185$. OWA: α_{ch} from WaveWatch 3.

 Transfer coefficients for momentum and turbulent heat fluxes are functions of z₀ (Jimenez et al., 2012), thus the sea-state.

Wave-ocean

- Sea-state dependent ocean-side momentum flux: $\tau_{oc} = \tau_a - (\tau_{in} + \tau_{ds}) \begin{array}{c} \tau_{in} \sim \text{wave growth} \\ \tau_{ds} \sim \text{wave dissipation} \end{array}$ from WRF OWA: from WaveWatch 3
 - Stokes Drift-Related processes.
 - Wave-height dependent ocean roughness length: $z_0^{ocean-side} = 1.3 H_s$

Significant wave height H_s:

Atm-only & **OA**: H_s following Rascle et al. (2008). **OWA**: H_s from WaveWatch 3.

Sea Surface Temperature response

- (OA): SST cooling up to ~3.7 °C.
- (OWA): Wave-related processes further enhance the SST cooling by ~1.2 °C, reducing the cooling bias compared with the satellite L4 SST.

Impact on the cyclone's track & intensity

- Simulated trajectories depend mainly on the initial conditions of the models (or the development phase of the cyclone); Improved tracks for init. at 17/00 vs 16/00.
- The coupling reduces the cyclone intensity (in terms of min. MSLP & max. 10-m winds), closer to the ECMWF IFS analysis.

Effects on air-sea momentum & heat fluxes

- Ocean coupling (OA) reduces both momentum and enthalpy (latent + sensible) fluxes, which is directly linked to SST cooling.
 negative feedback on cyclone.
- Wave coupling (OWA) increases air–sea fluxes due to increased surface roughness length, despite enhanced SST cooling in OWA.

Competing effects on cyclone intensity:

negative feedback via increased momentum flux and **positive** feedback via increased enthalpy flux.

Impact of wave coupling on surface roughness & air-sea exchange coefficients

- Wave-induced interactions (OWA) significant increases the surface roughness values (z_0) , particularly noticeable at winds exceeding value of 10 ms⁻¹.
- Consequently, both the Cd and Ck coefficients increase with a large range of values, leading to the enhancement of both momentum and enthalpy fluxes.

Conclusions

- Incorporating both ocean and wave processes improved the accuracy of cyclones' intensity and their underlying SST.
- The coupling feedback controls the deepening of the cyclone, while the models's initial conditions affects the track forecasts.
- Sea-state effects on surface roughness have competing effects on cyclone intensity.

Conclusions

- Incorporating both ocean and wave processes improved the accuracy of cyclones' intensity and their underlying SST.
- The coupling feedback controls the deepening of the cyclone, while the models's initial conditions affects the track forecasts.
- Sea-state effects on surface roughness have competing effects on cyclone intensity.

More details in the publication:

Karagiorgos et al., 2024 "Ocean-wave-atmosphere coupling effect in Medicane forecasting"

https://doi.org/10.1016/j.atmosres.2024.107418

Supplementary material

Upper-ocean response

- Upper-ocean cooling for at least 3 days after the cyclone's passage.
- Inertial oscillation of the thermocline behind the cyclone (period ~ 1 day), similar to tropical cyclones cases.