

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Verification of TROPOMI NO₂ Product Using OMI NO₂ Algorithm

Nickolav A. Krotkov¹, Lok N. Lamsal ^{2,1}, Bradford Fisher^{3,1}, Sungyeon Choi^{3,1}, Luke Oman¹, Wenhan Qin^{3,1}, Eun-Su Yang^{3,1}, Zachary Fasnacht^{3,1}, Joanna Joiner¹, Alexander Vasilkov^{3,1}, Sergey Marchenko^{3,1}, David Haffner^{3,1}, Peter J. T. Leonard ^{4,1}, Henk Eskes⁵, Jos van Geffen⁵, Pepijn Veefkind⁵, Folkert Boersma⁵, William H. Swartz⁶

> ¹NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA Spiversity of Maryland Baltimore County Baltimore, MD 20770, USA

Science Systems and Application Inc., Lannam, MD 2

ADNET Systems, Inc., Lanham, MD. 20, US Val Netherlands Meteorological Include, Re Blu ⁶Johns Hopkins University, Applied Physics Laboratory, Ja

MQ 20723, USA

Outline

• Developing Harmonized Multi-satellite NO₂ climate data records

PROGRAMME OF THE EUROPEAN UNION

opernicus

·eesa

co-funded with

- OMI NO₂ algorithms: NASA and QA4ECV
- OMI NO₂ trends
- OMI global NO₂ monitoring web site
- TROPOMI NO₂ algorithms: NASA and S5P offline
- OMI and TROPOMI Slant Columns Densities (SCD) comparisons
- OMI and TROPOMI tropospheric Vertical Columns (VCDs) comparisons
- OMI continuation with TROPOMI
- Validation of OMI and TROPOMI with Pandora NO₂ VCDs
- Summary

NASA

Developing Harmonized Multi-satellite NO₂ climate data records

- NASA Program: Making Earth System Data Records (ESDRs) for Use in Research Environments (MEaSUREs).
- Project: Multi-Decadal Nitrogen Dioxide and Derived Products from Satellites (MINDS): <u>https://www.earthdata.nasa.gov/</u><u>esds/competitive-</u><u>programs/measures/minds</u>. Project PI: Lok Lamsal
- EU and ESA projects: Quality Assurance for Essential Climate Variables (QA4ECV) and Climate Change Initiative (CCI) on Essential Climate Variables precursors for aerosols and ozone (CCI ECV): <u>https://climate.esa.int/en/projects/</u> precursors-for-aerosols-and-ozone/ Project PI for NO₂: Folkert Boersma

Satellite Tropospheric NO₂ Observations

PROGRAMME OF THE EUROPEAN UNION

opernicus

eesa

co-funded with

These efforts are highly relevant for emerging CEOS Atmospheric Composition Virtual Constellation GEO missions: GEMS (2020-), TEMPO (2023-), and Sentinel-4 (2024-)

NASA NO₂ Earth System Data Records (ESDRs)

co-funded with

opernicus

ESDR name	DOI	Level	Satellite/ Instrument	Period	Data Citation/ release
TROPOMI_MINDS_NO2	10.5067/MEASURES/MINDS/DATA203	L2 pm	S5P/ TROPOMI	2018 -	[Lamsal et al., 2022d]
OMI_MINDS_NO2	10.5067/MEASURES/MINDS/DATA204	L2 pm	Aura/OMI	2005 -	[Lamsal et al., 2022a]
OMI_MINDS_NO2_L2G	10.5067/MEASURES/MINDS/DATA214	L2G pm	Aura/OMI	2005 -	[Lamsal et al., 2022b]
OMI_MINDS_NO2_L3	10.5067/MEASURES/MINDS/DATA304	L3 pm	Aura/OMI	2005 -	[Lamsal et al., 2022c]
GOME_MINDS_NO2	<u>TBA</u>	L2 am	ERS-2/ GOME	1995 - 2003	2023
GOME2A/B_MINDS_NO2	<u>TBA</u>	L2 am	MetOp/ GOME-2A/B	2006-	2023

- Lamsal at al., 2022a, OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS 1-Orbit L2 Swath 13 km x 24 km, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC): <u>https://disc.gsfc.nasa.gov/datasets/OMI_MINDS_NO2_1.1/summary</u>
- Lamsal, at al., 2022b, OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS Daily L2 Global Gridded 0.25 degree x 0.25 degree, GES DISC <u>https://disc.gsfc.nasa.gov/datasets/OMI_MINDS_NO2G_1.1/summary</u>
- Lamsal, at al., 2022c, OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS Daily L3 Global Gridded 0.25 degree x 0.25 degree, GES DISC: <u>https://disc.gsfc.nasa.gov/datasets/OMI_MINDS_NO2d_1.1/summary</u>
- Lamsal, at al., 2022d, TROPOMI/S5P NO2 Tropospheric, Stratospheric and Total Columns MINDS 1-Orbit L2 Swath 5.5 km x 3.5 km, GES DISC: <u>https://disc.gsfc.nasa.gov/datasets/TROPOMI_MINDS_NO2_1.1/summary</u>

OMI NO₂ algorithms

opernicus

co-funded with

Algorithm	EU QA4ECV	NASA MINDS		
Reference	Boersma et al., 2018	Lamsal et al., 2021		
NO ₂ slant column density	QDOAS	Modified DOAS (Marchenko et al., 2015)		
Surface reflectivity	LER climatology at 0.5°x0.5° (Kleipool et al., 2008)	GLER ^{*)} at OMI FoVs (Qin et al., 2019; Fasnacht et al., 2019)		
Cloud correction	KNMI O ₂ -O ₂ algorithm LER climatology-based (Veefkind et al., 2016)	NASA O ₂ -O ₂ algorithm GLER-based (Vasilkov et al., 2018; Lamsal et al., 2021)		
A-priori NO ₂ profiles	TM5 at 1° x 1°	GMI** at 0.25° x 0.25°		
Strat-trop NO ₂ separation	TM5 data assimilation	Observation-based (Bucsela et al., 2013)		

* Poster: Qin et al., Geometry Dependent Lambertian Equivalent Reflectivity (GLER) **Global Modeling Initiative (GMI)

- Boersma, K. F., et al., 2018, Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, <u>https://doi.org/10.5194/amt-11-6651-2018</u>
- Lamsal, at al., 2021, Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455–479, <u>https://doi.org/10.5194/amt-14-455-2021</u>

MINO₂ trends: 2005 - 2021

PROGRAMME OF THE EUROPEAN UNION Opernicus co-funded with

• esa

OMI Global NO₂ monitoring web site: COVID-19 anomalies

Plots & Movies

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Data (csv file)

opernicus

eesa

https://so2.gsfc.nasa.gov/no2/no2 index.html

Click image for recent 15 day running average
Rome May 24, 2022
May 24, Baseline (2015-2019)
2022 mimus Baseline
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-2019
2015-201
2015-2019
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2015-201
2

:0.0 1.0 2.0 3.0 4.0 5.0 -2 -1 0 1 2 Aura CMI 15 Day Running Mean ND, Column (10[®] molecules cm²) (Gray: No Data) ND, Column Difference (10[®] molec cm²) Image Credit: MASA

13E

11E

Applying OMI NO₂ algorithm to **TROPOMI**

opernicus

co-funded with

Algorithm	ESA/KNMI (Operational)	NASA
NO ₂ algorithm heritage	QA4ECV [Boersma et al., 2018]	OMI MINDS NO ₂ [Lamsal et al., 2021,2022]
NO ₂ slant columns	ESA/KNMI (Operational)	Same
Surface reflectivity	OMLER climatology** at 0.5° x0.5°	GLER at TROPOMI FoV [see Poster: Wenhan et al.]
Cloud products	OMLER climatology-based	GLER-based
A-priori NO ₂ profiles	TM5 at 1° x 1°	*GMI-Replay at 0.25° x 0.25°
Strat-trop NO ₂ separation	TM5 data assimilation	Observation-based (Bucsela et al., 2013)

* Global Modeling Initiative (GMI) model – see presentation by Brad Fisher **Will be replaced with the S5P Directional Lambertian Equivalent Reflectivity (DLER) in new version

MMOMI vs TROPOMI Slant Column Densities (SCD)

PROGRAMME OF THE EUROPEAN UNION

co-funded with

· e esa

1.00

0.75

0.50

0.25

0.00

-0.25 -0.50

-0.75

-1.00

1.00

- 0.75 - 0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

- Compared normalized SCDs from TROPOMI (S5P-PAL) with OMI (both QA4ECV & NASA retrievals)
- TROPOMI SCDs were averaged over OMI footprints for comparison
- TROPOMI NO₂ SCDs are less noisy than OMI, but appear little higher than two independent OMI NO₂ retrievals

GON 30N 0° 30°5 60°5

TROPOMI PAL - OMI NASA

opernicus

OMI QA4ECV - OMI NASA

0

OMI vs TROPOMI Tropospheric NO₂

Opernicus co-funded with

55°N 50°N 45°N 40°N

TROPOMI NASA

TROPOMI PAL

2020 annual average Tropospheric NO₂

2

Tropospheric NO₂ (10^{15} mol./cm²)

 $5^{\circ}\mathrm{E}$

 $10^{\circ}\mathrm{E}$

 $15^{\circ}\mathrm{E}$

5°W

8

10

NASA

OMI continuation by TROPOMI: power plants

PROGRAMME OF THE EUROPEAN UNION

OPERNICUS co-funded with

Opernicus co-funded with

· e esa

OMI vs Pandora

TROPOMI operational S5P-PAL/OFFLINE, v2.3.1

TROPOMI NASA S5P-PAL/OFFLINE, v2.3.1

Greenbelt, Maryland

Summary

opernicus

PROGRAMME OF THE EUROPEAN UNION

- ✓ Updated NASA OMI NO₂ web site <u>https://airquality.gsfc.nasa.gov/no2</u>
- ✓ Continued NASA COVID-19 NO₂ monitoring web site: <u>https://so2.gsfc.nasa.gov/no2/no2_index.html</u>
- Released NASA OMI-continuation TROPOMI NO₂ data: <u>https://disc.gsfc.nasa.gov/datasets/TROPOMI_MINDS_NO2_1.1/summary</u>
- ✓ Compared OMI with TROPOMI NO₂:
 - > TROPOMI SCDs are higher than OMI over background areas
 - TROPOMI trop. VCDs are lower over background areas, but higher over pollution sources.
 - > Merging OMI and TROPOMI trop. VCDs requires accounting for different background.
- \checkmark TROPOMI NO₂ data agree better with PANDORA NO₂ measurements

TROPOMI tropospheric NO₂ NASA vs Operational

PROGRAMME OF THE EUROPEAN UNION

Opernicus co-funded with

NASA - PAL

- In polluted areas NASA tropospheric AMFs are smaller and VCDs are higher because of the use of GLER and *a priori* inputs.
- In background areas, PAL
 VCDs are higher primarily due to the difference in stratospheric NO₂ columns.

Dec2019-Jan2020-Feb2020