

Ousmane O. Sy ousmane.o.sy@jpl.nasa.gov Simone Tanelli simone.tanelli@jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

November 27, 2023

Copyright 2023. All rights reserved

Intro ●000	Diagram (canonical) 0000000	ExpliSyT (hierarchical) 00000	CConDoR (separable) 00	Outro 0

EarthCARE CPR: 1st radar of its kind:

What Doppler results to expect?

	Launch	f	XT scan	Observables
TRMM PR	1997	Ku	\checkmark	Z
CloudSat CPR	2006	W	×	Z
GPM DPR	2014	Ku, Ka	\checkmark	Z
RainCube PR	2018	Ka	×	Z
EarthCARE CPR	2024	w	×	Z, V, S

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0●00	0000000	00000	00	0

ECPR Idealized spectrum

- Reference moments: $(Z_{\rm R}, V_{\rm R}, S_{\rm R})$
- Idealized moments: $(Z_{\rm ID}, V_{\rm ID}, S_{\rm ID})$
 - NUBF bias: $V_{\mathrm{ID}}
 eq V_{\mathrm{R}}$
 - Spectral broadening: $S_{
 m ID}\gg S_{
 m R}$
- Pulse-pair moments: (Z_{PP}, V_{PP}, S_{PP})
 - NUBF, broadening
 - random, noisy

ExpliSyT (hierarchical)

Outro 0

Example: ECPR (PRF = 7 kHz) from sub-orbital APR3 in ORACLES (PI: dr. Jens Redemann)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
000●	0000000	00000	00	0

Why no correction for S?

Mean velocity V - NUBF

• Tanelli et al. (2002), Durden et al. (2007), Kollias et al. (2014), Sy et al. (2014)

$$V = (W_{wind} - V_{term}) + \phi_{\text{NUBF}}$$
(1)

• $\phi_{\text{NUBF}} \propto (V_{\text{SAT}}, \mathbb{Z})$ (hierarchical) \Rightarrow can be corrected

Spectral width S - broadening

Meneghini & Kozu (1990), Tanelli et al. (2002), Kollias et al. (2014)

$$S^{2} = (S^{2}_{\text{turb}} + S^{2}_{\text{shear}} + S^{2}_{\text{term}}) + \psi_{\text{BROAD}}$$
(2)

• $\psi_{\text{BROAD}}(V_{\text{SAT}}, \theta_{3\text{dB}}) \neq f(Z, V)$ (not hierarchical) \Rightarrow (2) not useable for correction

Resampling Diagram/ExpliSyT/CConDoR

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	●000000	00000	00	0

Canonical Doppler resampling: Fading(0), Znubf(0), Vnubf(0)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0●00000	00000	00	O

Canonical Doppler resampling: Fading(0), Znubf(0), Vnubf(1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	00●0000	00000	00	O

Canonical Doppler resampling: Fading(0), Znubf(-1), Vnubf(1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	000●000	00000	00	0

Canonical Doppler resampling: Fading(0), Znubf(1), Vnubf(1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000●00	00000	00	O

Canonical Doppler resampling: Fading(1), Znubf(1), Vnubf(1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	00000●0	00000	00	0

Canonical Doppler resampling: Fading(1), Znubf(1), Vnubf(1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	000000●	00000	00	0

Canonical Doppler resampling: Fading(1), Znubf(1), Vnubf(-1)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	●0000	00	0

Idealized ECPR moments

$$\mathcal{P}_{\mathrm{I}}(x_{\mathrm{I}}; \mathbf{v}) = \int_{\mathcal{L}} U_{J}(x_{\mathrm{I}} - x_{\mathrm{E}}) \int_{\mathcal{X}} \alpha_{\mathrm{X}}(x_{\mathrm{E}} - x_{\mathrm{A}}) \mathcal{P}_{\mathrm{A}}[x_{\mathrm{A}}; \mathbf{v} + \beta(x_{\mathrm{E}} - x_{\mathrm{A}})] dx_{\mathrm{A}} dx_{\mathrm{E}}$$

Doppler moments by integration wrt v

$$Z_{\mathrm{ID}} = U_J * lpha_{\mathrm{X}} * Z_{\mathrm{A}} = Z_{\mathrm{R}}$$

- U_J : along-track integration
- α_X : antenna pattern
- (*): convolution ¹

¹for any functions F_1 and F_2 , $F_1(x_I) * F_2(x_I) = \int F_1(x_I - x)F_2(x)dx$.

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	0●000	00	O

Idealized ECPR moments: by v-integration Analytical

in uniform beamfilling: ψ_{UBF} = (V_{SAT}/h_{SAT})² A₂ ~ (3.6 m/s)²
 A₂, D₂, D₄ : factors of variance and kurtosis of U₁ and α_X

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	00●00	00	0

Example: ECPR idealized scale analysis

Intro 0000	Diagram (canonical) 0000000	ExpliSyT (hierarchical) 000●0	CConDoR (separable) 00	Outro 0

Example: ECPR idealized ($V_{ m FAD}=7.2~ m km/s$)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	0000●	00	O

Example: ECPR pulse pair ($V_{\rm FAD}=7.2~{\rm km/s}$)

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	00000	●0	0

CConDoR approach: Complex Convolutional Doppler Resampling

$$\mathcal{P}_{\mathrm{I}}(x_{\mathrm{I}};v) = \int_{\mathcal{L}} U_{J}(x_{\mathrm{I}} - x_{\mathrm{E}}) \int_{\mathcal{X}} \alpha_{\mathrm{X}}(x_{\mathrm{E}} - x_{\mathrm{A}}) P_{\mathrm{A}}[x_{\mathrm{A}};v + \beta(x_{\mathrm{E}} - x_{\mathrm{A}})] dx_{\mathrm{A}} dx_{\mathrm{E}}$$

Inverse Fourier transform wrt v

 $\mathcal{Q}_{\mathrm{I}}(x_{\mathrm{I}},\tau) = \Gamma_{\mathrm{I}}(x_{\mathrm{I}},\tau) * \mathcal{Q}_{\mathrm{A}}(x_{\mathrm{I}},\tau)$

- $Q_{I} = \mathcal{F}_{v}^{-1} [\mathcal{P}_{I}]$: ECPR correlation (lag τ)
- $Q_{\rm A} = \mathcal{F}_v^{-1} [P_{\rm A}]$: Input correlation (unaffected by $V_{\rm SAT}$)

 $\Gamma_{\rm I}(x,\tau) = U_J(x) * \left[\alpha_{\rm X}(x) e^{-i4\pi \frac{\tau}{\lambda} \beta(x)} \right]$

By deconvolution

- NUBF correction
- broadening correction
- resolution enhancement

Intro	Diagram (canonical)	ExpliSyT (hierarchical)	CConDoR (separable)	Outro
0000	0000000	00000	○●	0

Example from $CAMP^2EX \ 2019/09/16$: ECPR pulse pair

Intro 0000	Diagram (canonical) 0000000	ExpliSyT (hierarchical) 00000	CConDoR (separable) 00	Outro ●
		c		

Thank you for your attention

References

- ExpliSyT: O.O. Sy and S. Tanelli, Recovering the Elusive Spectral Width from Spaceborne Doppler Profiling Radar Measurements: the "ExpliSyT" Approach, IEEE TGRS, vol. 61, 2023
- <u>CConDoR</u>: 0.0. Sy and S. Tanelli, Dynamic Retrievals From Spaceborne Doppler Radar Measurements: the CConDoR Approach, *IEEE TGRS, vol. 60, 2022*

Acknowledgements

- NASA's Earth Science US PI program
- NASA's ORACLES and CAMP²EX campaigns (EVS-2 program)