

climate change initiative

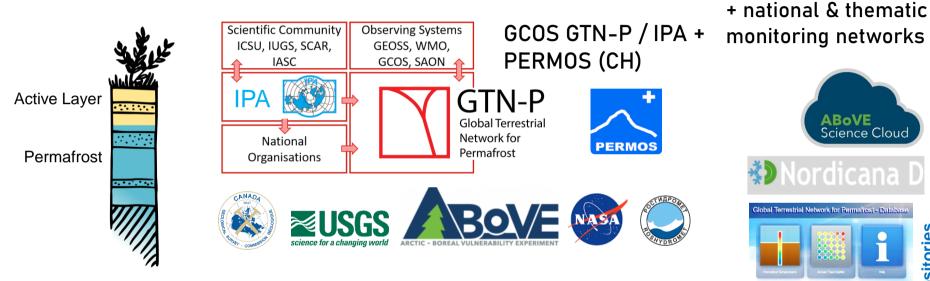
→ PERMAFROST

Validation of Permafrost_cci II products using international and national monitoring networks

B. Heim¹, M. Wieczorek¹, C. Pellet², R. Delaloye², Sebastian Westermann^{3,4}, F. Miesner^{1,3}, A. Irrgang¹, H. Matthes¹ B. Biskaborn¹, G. Grosse¹, Line Rouyet⁵, Tazio Strozzi⁶ & Annett Bartsch⁷

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany;
PERMOS, University of Fribourg, Fribourg, Switzerland; 3 Department of Geosciences, University of Oslo, Norway;
Center for Biogeochemistry in the Anthropocene, University of Oslo, Norway;
NORCE Norwegian Research Centre, Tromsø, Norway;
GAMMA Remote Sensing, Switzerland;
BGEOS, Vienna, Austria

*


ESA UNCLASSIFIED - For Official Use

▬◨◪;====================

Permafrost: What is measured in-situ?

- Ground that is at or below 0° C MAGT for at least 2 consecutive years
- ECVs: active layer thickness, permafrost temperature

ESA | 01/01/2016 | Slide 2

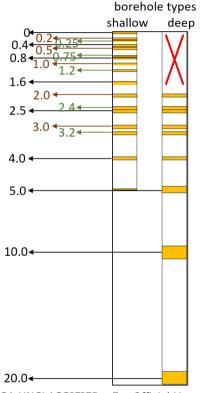
ESA UNCLASSIFIED - For Official Use

Ground Temperature Reference Data

Permafrost cci

GTD dephts

0 m


1 m

2 m

5 m

10 m

ESA UNCLASSIFIED - For Official Use

Permafrost_cci Ground Temperature per Depth GTD represents Mean Annual GT MAGT

- Permafrost_cci GTD time series at 0.0, 1.0, 2.0, 5.0, 10 m depths
- Permafrost_cci reference data collection for match-up analyses:
 - In-situ MAGT time series down to 20 m depth

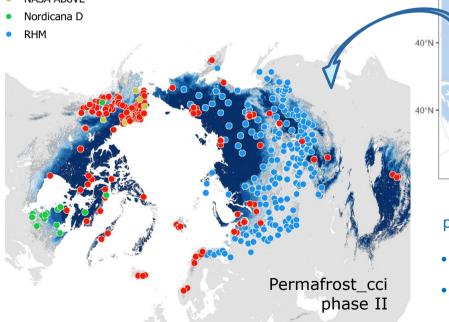
different depths per measurement programs, filling up missing depths by interpolation (quality criteria: yes, if sensors at high depth resolution)

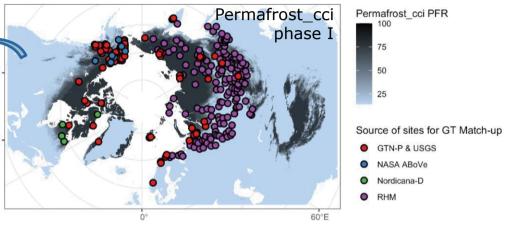
Permafrost_cci product team supplies **GTD time series for all depths for all boreholes** -> validation across all available in-situ depths n = 13,614 match-up pairs (in time and depth) for 477 sites

n = 27,389 match-up pairs for 477 sites for the interpolated dataset

Permafrost_cci standardised MAGT reference data FAIR Data Publication in PANGAEA (in submission) ESSD manuscript (in preparation)

ESA | 01/01/2016 | Slide 3


Ground Temperature Reference Data

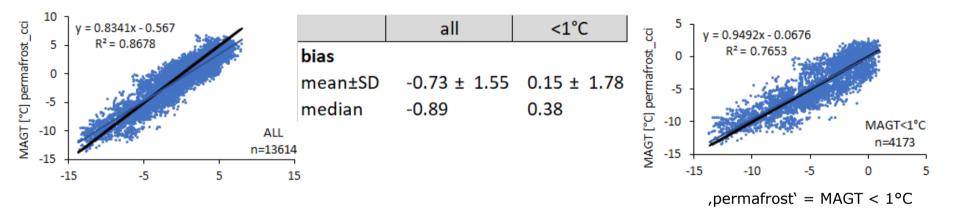


Sources of Sites for GT Match-up

ESA UNCLASSIFIED - For Official Use

- GTN-P & USGS
- NASA ABoVE

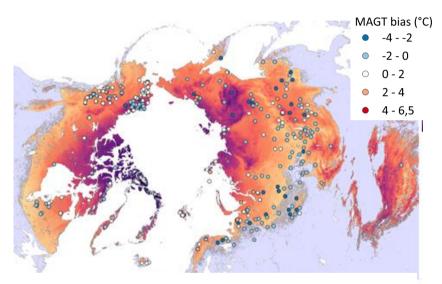
possible due to user feedback from Permafrost_cci workshops:


- additional GT depths for validation: 0.1 m + 1.50 m
- additional in-situ GT and ALT sites boreal North America (Alaska, Canada)

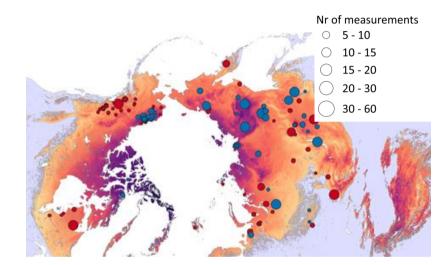
ESA | 01/01/2016 | Slide 4

Assessment of Permafrost_cci GTDv4

GTD median bias **-0.89** °C, for ,cold sites' GTD median bias is lower: **0.38** °C. for ,permafrost sites' without GTD = 0 m the quality is high with a **mean bias of 0.08** °C.


stable GTD bias across depths with a larger negative mean bias in shallow depths (0 to 3m), mainly caused by a negative bias in match-up pairs of the ,non permafrost sites' (MAGT >= 1° C). The surface temperature GTD = 0 m shows the largest bias of the permafrost site subgroup.

ESA UNCLASSIFIED - For Official Use


ESA | 01/01/2016 | Slide 5

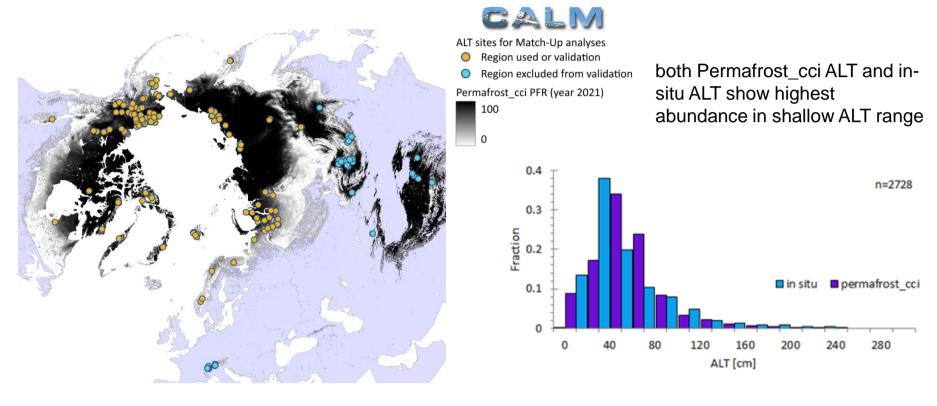
□ II ≥ II = + II = ⊆ II II = = H = 0 II = II = II * →

Permafrost_cci GTD bias is mainly negative at the southern boundary zones in Siberia and Northern America

extreme residuals appear with <5% quantile mainly in Northern Alaska and Eastern Siberia and with >95% quantile mainly in the southern discontinous, sporadic and non permafrost zones.

> residuals >95% (red) and <5% quantile (blue) ESA | 01/01/2016 | Slide 6

ESA UNCLASSIFIED - For Official Use



bias

Active Layer Depth Reference Data

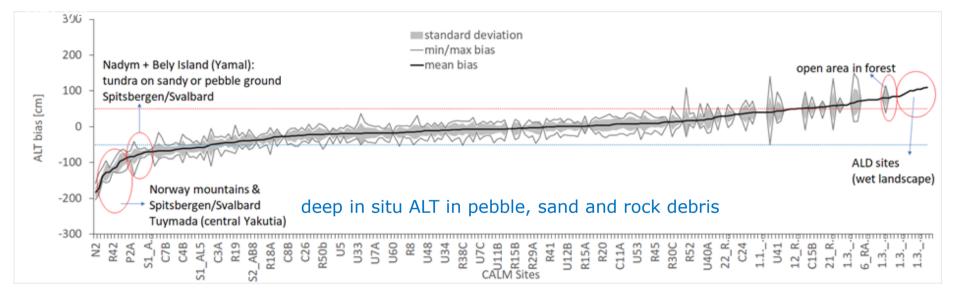
ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 7

Assessment of Permafrost_cci ALTv4

LT	bias (cm)	bias		
\bigcirc	-200150			
\sim	-150100	mean±		
		mediar		
	-10050	abs bi		
\supset	-50 - 0	-		
	0 - 50	mean±		
	50 - 100	mediar		
	100.0 - 150.0			
ermafrost_cci ALT (year 2021)				
	450			

bias				
mean±SD	-17.33 ±	43.8		
median	-13			
abs_bias				
mean±SD	33.31 ±	33.3		
median	22			


large positive bias > 1 m (deep Permafrost_cci ALT versus shallow in situ ALT) occurs in few match-up pairs in Alaska, Canada and Russia. large negative bias > -1.5 m occurs in Svalbard in rocky and pebble terrain (shallow Permafrost_cci ALT versus deep in situ ALT).

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 8

Assessment of Permafrost_cci ALTv4

mean bias (Mongolia, China, Swiss Mountains excl.). x-Axis sorted by mean bias.

blue line = bias - 50 cm (Permafrost cci ALT too shallow)

red line = bias + 50 cm (Permafrost_cci ALT too deep).

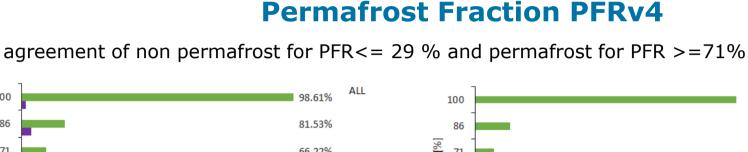
ESA UNCLASSIFIED - For Official Use

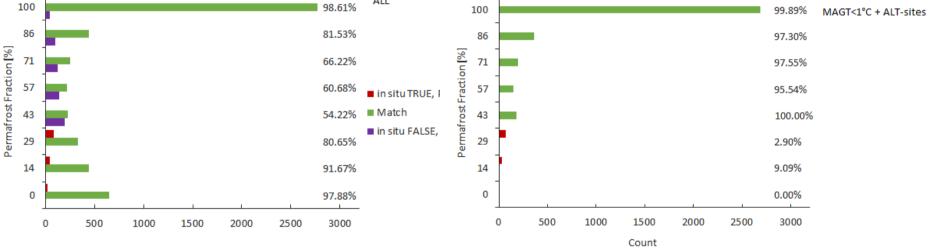
ESA | 01/01/2016 | Slide 9

Active Layer Thickness ALT Improvements phase II vs I

mean bias (Mongolia, China, Swiss Mountains excl.). x-Axis sorted by phase I mean bias.

blue line = phase II bias, orange line = phase I sorted bias




ESA | 01/01/2016 | Slide 10

4

ESA UNCLASSIFIED - For Official Use

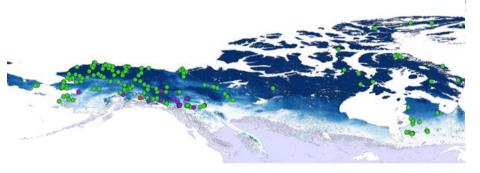
ESA | 01/01/2016 | Slide 11

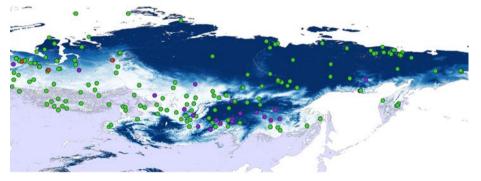
TRUE: PFR > 40 % AND (IN SITU MAGT< 0.5°C OR ALT)

Assessment of Permafrost_cci PFRv4

esa

European Space Agency


🔶 European



Assessment of Permafrost_cci PFRv4

Permafrost Fraction PFRv4

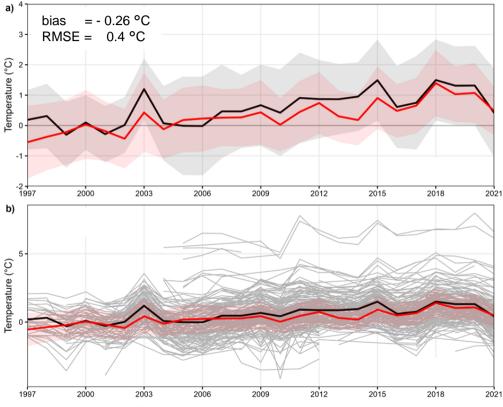
PFR matching results

- in situ FALSE, Permafrost_cci >29
- in situ TRUE, Permafrost_cci<=29
- Match

Permafrost_cci PFR (year 2021)

100 0

majority of PFR match-up pairs


(83.89 % PFR <=14 % and 87.99 % for PFR <= 29 %) in agreement between in-situ vs. Permafrost_cci abundance yes / no.

notably, the 100 % and the 0 % Permafrost_cci PFF show high percentage of agreement, with 98.61 % and 97.88 % match.

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 12

PERMOS Assessment of Permafrost_cci GTDv4

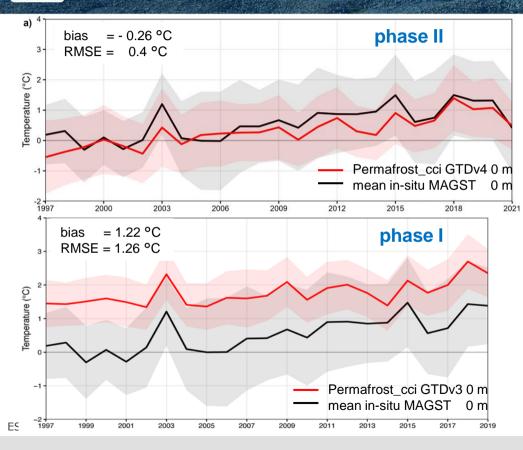
ESA UNCLASSIFIED - For Official Use

Permafrost_cci GTD 1997 - 2021 PERMOS permafrost monitoring

- a) CH mean MAGST (black)
- b) MAGST at each logger

compared to **mean Permafrost_cci GTD at 0 m** (red) over the entire Swiss Alps between 2500 and 3000 m a.s.l. (shaded ± sdv.)

Permafrost_cci GTD 0 m cold bias -0.27 °C


Warming tendency observed in-situ well reproduced by Permafrost_cci GTDv4, as well as the inter-annual variability.

- Permafrost_cci GTD 0 m
- in-situ MAGST/ site 0 m
- mean in-situ MAGST 0 m

ESA | 01/01/2016 | Slide 13

The set of th

PERMOS Assessment of Permafrost_cci GTDv4

Permafrost_cci GTD 1997 - 2021 PERMOS permafrost monitoring

- a) CH mean MAGST (black)
- b) MAGST at each logger

compared to **mean Permafrost_cci GTD at 0 m** (red) over the entire Swiss Alps between 2500 and 3000 m a.s.l. shaded \pm sdv.

Permafrost_cci GTD phase II considerably better performance compared to phase I warm bias +1.22°C became a slight cold bias -0.26°C.

ESA | 01/01/2016 | Slide 14

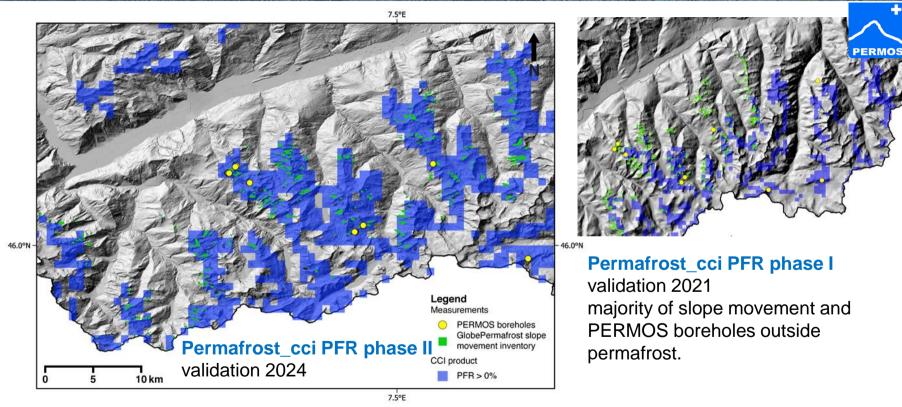
PERMOS Assessment of Permafrost_cci PFRv4

7.5°E Legend Measurements PERMOS boreholes GlobePermafrost slope Permafrost_cci PFR phase II movement inventory CCI product validation 2024 10 km PFR > 0% 7.5°E

Permafrost_cci PFR 2021 Bas-Valais (CH)

ESA GlobPermafrost slope movement inventory (rock glaciers, push moraines)

PERMOS permafrost monitoring boreholes


11 PERMOS boreholes in Permafrost one not in PFR > 0%

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 15

PERMOS Assessment of Permafrost_cci PFR

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 16

European Space Agency

esa

climate change initiative

Thanks to IPA/GTN-P, to all measurement programs and all data providers and data repositories

ESA UNCLASSIFIED - For Official Use

European Space Agency

+