A climatological model of the Equatorial Electrojet
derived from Swarm satellite magnetic data Cesa
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Introduction Model parameterisation and model estimation Model assessment
The Equatorial Electrojet (EEJ) Is a strong horizontal For a given (fixed) QD-latitude, the ionospheric sheet Fig. 5 shows the Mean Absolute Deviation,
electric current in the iOnospheriC dynamo region current density IS expanded aeeordind to: Nyats
(about 115 km altitude), located on the dayside B MAD = median T
hemisphere above the magnetic dip equator. J,(f’ 2 i; . F1g'7) = (1 + R F)x ,2_1: |
Latitudinal profiles of the electric sheet current density t - .
a t+ mo + ks + | — d — ¢mod
between +£20° magnetic (QD) latitude are provided as 2. 2. 2 2 { pmii cos (PL+ Mo + ks + Iv) of the difference r = d — d™" between the Nea, data

pZ0 mZ—n, k=—ns |Z],,, points (the individual sheet current densities as given
in the EEF data product), collected in d, and model
predictions d™°¢ for various data sets.

the Swarm Level-2 EEF data product for each of the
three Swarm satellites. In this study we use an + bp.m k., sin(pt + mo + Ks + /u)}
extended EEF data set for Swarm Alpha and Bravo

spanning nine years, to derive a climatological model » t: Universal Time (UT) in radians Compare with model predictions using
of the EEJ. This exténded data set includes EEJ > ¢: geographic longitude in radians (https: //geomag‘Org/mOdelS/EEJ‘html)
profiles not only during daytime (as in the operational > s: season in radians, counted from 20 March (s = 0) based on CHAMP, @rsted, and SAC-C satellite
EEF product) but for all Local Times. Our model » v: lunar phase in radians, where v = 0 corresponds to magnetic data.
includes dependencies on UT, longitude, season, New Moon and v = 7 is Full Moon 0 :
EUVAC solar flux and lunar phase and is validated with ~ » Fs: solar flux proxy EUVAC in s.f.u. (solar flux units), _
independent data from Swarm Charlie and the CSES defined as Fs = (F10.7 + F10.74)/2, where Fio7 is the
satellite. 10.7 cm wavelengths daily solar flux and Fqg 74 is its 20 _
81-day running mean :
B > = ns =, = 4.and e = [0, 2 \ *
Profile measurements of satellite scalar magnetic data Disregarding invalid parameter combinations for ; Y, o o e e R
near the magnetic equator can be converted to p, m, k, [ results in 1539 model parameters st o ooy (EEF operzions) : :
latitudinal profiles of height-integrated EEJ sheet 8p m k.1, Bpm K, and R. | | o cEmosema | |
current densities J by applying the Swarm DISC / , _ _ o 3 : o 15 18 21 24
SCARF algorithm. Each of the resulting sheet current Qgr;:gfgys\:iﬁr?—lvﬁgp’ﬁgiéﬁ?suiSSt Lesaes;—foqgg{i?nsate e 5: Mean Absolute Dewatior: ZE]AD) ISR
((j)eDn-SI;[t)iItEer%f!GEZCO().?)?,IS—tj g.f;j_\/?;g: .S.p.a,ln_ncl)r.lgo’,[he separate models for each of the 81 QD latitudes _rF}?ndeel predictions for the various data sets, as a function of Local
0.0°,+0.5%,...,+19.5°,+20.0°. This algorithm has between —20° and +20°.
been applied to data collected by the: Becausg of the gq-estlmatlon of the solar f!ux |
» Swarm satellites (25 Nov 2013 — 25 Nov 2022): 32 regression coefficient A and the Huber weighting, the g °
equatorial crossings per day and satellite spanning all It?w\éer;?cl;)rg 22?\2321:;%3235 slightly non-linear and Is
Local Times (LT); | o -
» Chinese Seismo-Electromagnetic Satellite (CSES-01 . <
(12 Jul 2018 — 30 Apr 2022)9: limited local ti(me )
coverage (02/14 LT) 0 0 e s |
Model estimation is based on Swarm A and C EEJ — o - ; §.aia ot R

current density estimates for all LT (extended dataset).
Model validation is based on daytime Swarm B
(operational L2 product) and CSES-01 estimates.

= : Figure 6: Model EEJ sheet current density as a function of longitude
=) | ¢ and Local Time T, for different QD-latitudes and a mean solar flux
4 360 J ' B ' ' . of Fs =100 s.f.u.
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N E Figure 3: Model EEJ sheet current density at the dip-equator » Correlation of un-averaged time series around 0.6 at
L i P (QD-latitude = 0°) as a function of longitude ¢ and Local Time T, for th a MAD of ‘matelv 27 Ak
| | | | | | | different seasons and a mean solar flux of Fs = 100 s.f.u. noon, W'. a Of approximately m, |
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Figure 1: Mean EEJ sheet current density as a function of o QDistitude: 60 QDiatitude:45 QDdatitude:30° tracks
quasi-dipole latitude and Local Time T based on 9 years of B oof | 6o} | 6o} | ’ _ _
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Figure 2: Left: Mean EEJ sheet current density at the dip-equator . _ N T 2 s ; N R r o :
(0° QD latitude) as a function of Local Time T and longitude ¢ (left), Model coetticients and Matlab forward code available , - _ - | g]. .
season s (middle), and lunar phase v, respectively. at www.spacecenter.dk/files/magnetic-models/EEJ/ . Figure 7: Observed and modelled sheet current density for the first

half of 2018 (solar minimum, average solar flux Fs = 71 s.f.u., top),

» Wavenumber four longitudinal dependence respectively 2015 (solar maximum, Fs = 128 s.f.u., bottom).

» Seasonal maxima around the equinoxes with
secondary maximum during winter

» Maxima around New and Full Moon
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