

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

NOx emissions derived from Sentinel-5P observations

Ronald van der A, Jieying Ding, Henk Eskes, Bas Mijling, Xiaojuan Lin (KNMI)

 $\langle 0 \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004318

DECSO

Daily Emissions Constrained by Satellite Observations

Characteristics:

- It is fast: one model run per assimilation step of 1 day
- No *a priori* information: unknown sources become visible.
- Model: CHIMERE v2020r3
- Observations: TROPOMI NO₂ (v2.4), CRIS NH₃
- Includes error estimate (about 25% for individual grid cells)
- Used for daily/monthly NO_x and NH₃ emissions
- Resolution is 0.2°x0.2°, or 0.05°x0.05° for a smaller domain

0 2 4 6 8 10 12 14 N Mg/km2/yr

Derived NO_x and NH₃ emissions from TROPOMI observations using DECSO

Country totals of European NO_x emissions (2019)

Annual NO_x emissions

DECSO 2019

DECSO compared to **CAMS-REG-AP** for some big cities (2019)

DECSO CAMS

DECSO

CAMS

2022

Emissions [(N)Mg/n

Paris

Istanbul

2022

2020

Emissions [(N)Mg/month] 0000 1000 0002

1000

6000

2029

2029

1.0 1.5 (N) kg/km²/h

2.0

CAMS 2019

N Comparison for European big emitters (NO_x)

- **DECSO** v6.3: anthropogenic NO_x
- CAMS: CAMS-REG-AP v5.1, CAMS-GLOB-TEMPO v5.3

Comparison with independent emission estimates using TROPOMI

Similar results as the study of Lange et al. (2022), who are using a plume-fitting method applied to the TROPOMI observations.

Large thermal power plants (2019-2022)

Soil NO emissions derived for Europe compared to CAMS and HEMCO (for 2019)

Going to higher resolutions for DECSO

DECSO 2019

0.1° x 0.1°

Available with DECSO:

- Europe at 0.2° x 0.2° (2019-2023)
- Netherlands at 0.1° x 0.1° (2019-2023)
- Netherlands at 0.05° x 0.05° (2019)

0.05° x 0.05°

Note that the time and legend are different in these figures

Comparison of DECSO with official registered emissions (of RIVM) in the Netherlands

Comparison with official registered emissions in the Netherlands (preliminary results)

 Comparison of emissions from Dutch provincial capitals between DECSO (x-axis) and Dutch Emission Registration (y-axis) (city pop.: 180-360 thousand) Comparison at county level (Dutch "gemeente") between DECSO (x-axis) and Dutch Emission Registration (y-axis)

courtesy Hannes Witt (RIVM)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Summary

- DECSO version 6.3/6.4 includes error estimates and a split into biogenic and anthropogenic sector.
- DECSO provides independent satellite observation-based emissions of industrial and city-scale local emissions. No apriori information is used.
- NOx emissions can be derived on a spatial resolution of 0.05° x 0.05° (± 5km).
- Intercomparisons with CAMS emissions shows for NOx that:
 - Country total emissions of CAMS and DECSO are within 10%
 - City and soil emissions are systematic higher than CAMS
 - Results of industrial sources are inconclusive (due to limited number of isolated industrial point sources)