

Tracking the volume changes of shallow lakes in West Africa: comparison of existing methods to derive the height-area relationship

F. Girard¹⁵, L. Kergoat¹, H. Nikiema², M. Wubda², J.-M. Dipama², A. Touré³, I. Mainassara³, R. Yonoba⁴, T. Fowé⁴, M. de Fleury¹, N. Taburet⁵, M. Grippa¹ ¹GET, Toulouse (France), ²Université de Ouagadougou (Burkina Faso), ³Université de Niamey (Niger), ⁴2IE, Ouagadougou (Burkina Faso), ⁵CLS, Ramonville-Saint-Agne (France)

Hydrospace 2023, 27 November – 1 December 2023 | FIL Lisbon, Portugal

Lake volume change: a key variable

- **3%** of the global land area (Messager et al., 2016)
- 87% of Earth's liquid surface fresh water (USGS)

Satellites reveal widespread decline in global lake Over the past 3 decades, 53% of the largest global lakes have shown a significant decrease (Yao et al., 2023).

- Volume change monitoring applications:
- impact of **climate change** and **human activities** on **water**

Gewex

- ecosystems sustainability
- **reservoirs** and **human water** consumption management
- inputs to hydrological models

Benefits of remote sensing

SWOT

Repeated and widely spread observations of water surface height (H) and area (A). Sentinel-3&6, CryoSat-2, ICESat-1&2: resolution < 300m Sentinel-1&2, Landsat constellation: **resolution < 30m** SWOT covers +90% of inland areas (Biancamaria et al., 2016)

GEWEX

Combination of H and A allows estimating volume changes of more and more small and medium-sized lakes (< 100km²)

Volume changes can be measured using the **height-area relationship** with $\Delta V = \int_{U}^{H_2} A(H) dH$

Height-area relationship benefits:

- Getting rid of some lake morphology assumptions
- Using **only one variable**, either H or A, to compute volume changes
- **Densifying** H or A time series

Water surface area (A) 27 NOVEMBER – 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Studied methods

- Few studies compare the methods to derive the height-area relationship from recent remote sensing data.
- Here we propose a **comparison of four methods**:

· e esa

GEWEX

Studied methods: DEM

Images ordered when lakes are as dry as possible

Studied methods: DEM/contours

Height-area relationship

Gewex

HYDROSPACE 2023 GÉOSCIENCES ENVIRONNEMEN TOULOUSE

27 NOVEMBER - 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Studied methods: Profile/contours

Height-area relationship

GEWEX

ICESat-2 lidar altimetry (ATL08) Along-track resolution: 100m, 3x2 beams

GEDI lidar altimetry (L2A)

Along-track resolution: 60m, 8 beams

Sentinel-2 images (MNDWI)

Horizontal resolution: 20m x 20m

2 different height-area relationships

Studied methods: Height/area

GEWEX

Sentinel-2 images (MNDWI)

Horizontal resolution: 20m x 20m

HYDROSPACE 2023 Géosciences Environnement Toulouse

27 NOVEMBER - 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Matching within +/- 3 days (de Fleury et al., 2022)

Study area

Study area:

 Location: Central Sahel (Mali, Niger, Burkina Faso), 10.8°N - 15.5°N

GEWEX

- Rainfall: 200mm/y (North) to 1000mm/y (South)
- Wet season: Jun-Oct (tropical monsoon)
- **Dry season:** Oct-May (very low cloudiness).

Study area

Studied lakes:

- 16 studied lakes (10 reservoirs, 6 natural lakes)
- Varied areas: 0.22km² 21km². Depth: mostly < 5m deep

Gewex

• Varied optical water types: open water, moderate to high turbidity, temporary or permanent aquatic vegetation

Tanvi Sud, mean area 0.2 km² (BF)

Seguenega, mean area 1.4 km² (BF)

Kokorou, mean area 21 km² (Niger)

Study area

TOULOUSE

Remote sensing data:

• Pleiades DSMs, ICESat-2 and GEDI data over the 16 lakes

Gewex

Sentinel-3 radar data over 10 lakes

In situ data:

- In situ data over 8 lakes
- Different types and from different sources
- **Real-time** WSH time series from **pressure transducers** data (2 lakes)
- **Historical** WSH time series from **gauge measurements** (1 lake)
- **Hypsometric curves** from water management agency or existing studies (5 lakes)

Results: H-A relationships

Lakes with in situ data

• Generally good agreement between each method

GEWEX

- Small height amplitudes ranging from 1.5m to 5m, with most amplitudes below 3m
- Generally **good agreement** of all methods **with in situ data**, except for two reservoirs where all EO methods still remain consistent.
- Most RMSE values < 0.30m

Consistent shape patterns

GEWEX

The different methods consistently observe fine shape patterns such as slope breaks

The curves look more like degree-3 polynomials than degree-1 or -2

HYDROSPACE 2023 Géosciences Environneme Toulouse

27 NOVEMBER - 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Pleiades jitter

with Copernicus DEM (GLO-30)

HYDROSPACE 2023 GÉOSCIENCES ENVIRONNEMENT TOULOUSE

27 NOVEMBER - 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

eesa

DSM noise impact

TOULOUSE

eesa

Gewex

Bias on GEDI data

Elevation biases have been observed among GEDI data from different acquisition dates. We selected the most complete and least noisy date

27 NOVEMBER - 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Pieces of caution

OULOUSE

- The dependency of curves extent to acquisition dates is clearly visible for lidar- and DSM-derived methods
- Higher noise observed on certain Sentinel-3-derived curves is attributed to waveform contamination or lake

 Size Géosciences

 HYDROSPACE 2023
 LIVIRONNEMENT

 27 NOVEMBER 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Water elevation precision

HYDROSPACE 2023

Median Absolute Deviation (MAD) over the contours/transects is used to assess the **water elevation precision** of each method (also includes contour detection precision)

Sentinel-3: most values < 0.06m

Good precision stability: IQR < 0.20m

Volume-area curves accuracy

No systematic differences between methods

 $NRMSE = \frac{RMSE}{Obs_{max} - Obs_{min}}$ (Busker et al., 2019)

All NRMSE values below 20%, most below 10%

GEWEX

27 NOVEMBER – 1 DECEMBER 2023 | FIL LISBON, PORTUGAL

Conclusion and outlook

- Height-area relationships from 4 different methods
- Comparison over 16 lakes in West Africa.
- Different sources of data: DSMs, optical imagery, lidar, radar altimetry

Gewex

- Generally good agreement between methods and w.r.t. in situ data
- Consistent observation of fine shape patterns over small height amplitudes
- Water elevation retrieved with **generally good precision**
- Some inherent limitations of each method have been identified (e.g. data quality, surface features, temporal coverage). Spatial coverage or data accessibility must ²⁹⁹ also be discussed.

Outlook:

- Combining data provides more robust H-A relationships and improves extent
- Particularly interesting for ungauged lakes or lakes with outdated in situ data

These results will be **published in a paper** currently in preparation (Girard et al.)

THANK YOU FOR YOUR ATTENTION!

felix.girard@get.omp.eu

Tracking the volume changes of shallow lakes in West Africa: comparison of existing methods to derive the height-area relationship

F. Girard¹⁵, L. Kergoat¹, H. Nikiema², M. Wubda², J.-M. Dipama², A. Touré³, I. Mainassara³, R. Yonoba⁴, T. Fowé⁴, M. de Fleury¹, N. Taburet⁵, M. Grippa¹ ¹GET, Toulouse (France), ²Université de Ouagadougou (Burkina Faso), ³Université de Niamey (Niger), ⁴2IE, Ouagadougou (Burkina Faso), ⁵CLS, Ramonville-Saint-Agne (France)