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Existing Limitations 

Missed Cloud Drizzle

CWC-RVOD product:
Combined Radar + Visible Optical Depth

Leinonen et al., 2016



Key Points

1. Radar-based retrievals of low-cloud profiles have major deficiencies:
• Missed detection
• Precipitation contamination

2. (Sub)adiabatic theory in good agreement with radar observations for 
non-precipitating clouds.
• Only requires Vis/NIR observations to derive cloud profiles

3. Machine Learning (non-linear regression) can be used to exploit lidar 
observables and radar integral constraints to derive vertical profiles 
within reasonable uncertainties.
• This works even when Vis/NIR observations are missing!



Problem #1

The CloudSat radar misses a large fraction of shallow warm clouds

~45% missed

Christensen et al., (2013)
https://doi.org/10.1002/2013JD020224
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The CloudSat radar misses a large fraction of shallow warm clouds

Solution #1:
Use Vis/NIR retrievals to infer vertical profiles

~45% missed

Christensen et al., (2013)
https://doi.org/10.1002/2013JD020224



Adiabatic Cloud Model

Adiabatic theory is widely used to 
translate:

What’s new here?

1. Use adiabatic theory to derive the 
complete profile - Not just 
number concentration.

2. Sub-adiabatic factor is a function 
of height above cloud base:

𝑓𝑎𝑑(ℎ) =
ℎ𝑜
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Adiabatic Cloud Model

Schulte et al., (2023)
https://doi.org/10.5194/amt-16-3531-2023
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Adiabatic Cloud Model

What’s New here?

1. Use adiabatic theory to derive 
the complete profile. Not just 
number concentration.

2. Sub-adiabatic factor is a 
function of height above cloud 
base :

Schulte et al., (2023)
https://doi.org/10.5194/amt-16-3531-2023

𝑓𝑎𝑑(ℎ) =
ℎ𝑜

ℎ𝑜 + ℎ

Implementation:

• Use CALIOP to define cloud top height.

• Use MODIS optical depth and effective radius 
to define microphysical vertical profile



Validation of adiabatic Model



Example Solution #1 (missed clouds)



Example Solution #1 (missed clouds)



Example Solution #1 (missed clouds)



Example Solution #1 (missed clouds)



Example Solution #1 (missed clouds)



Problem #2

Radar retrievals misdiagnose precipitation as cloud water

Drizzle Cells

Overestimated
LWP



Problem #2

Radar retrievals misdiagnose precipitation as cloud water

Solution #2:
Use Vis/NIR retrievals to infer vertical profiles

Drizzle Cells

Overestimated
LWP



Example Solution #2 (drizzle clouds)



Problem #3

We have no Vis/NIR retrievals at night

OR

Vis/NIR retrievals fail 
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Problem #3

We have no Vis/NIR retrievals at night

OR

Vis/NIR retrievals fail 

r = 0.60
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Solution #3:
Use machine learning to exploit available observables to infer optical 

depth and effective radius



Machine Learning Approach

• Random forest regression model details:
• Trained on Jan 2008, tested on February 2008
• 50 trees
• Ocean pixels only
• Used Python’s scikit-learn package

• Model inputs:
• CPR surface return (𝜎0) and 94 GHz brightness 

temperature (TB94)
• ECMWF environmental data: total column water 

vapor (TCWV), SST, and surface wind speed
• CALIOP 532 nm column integrated attenuated 

backscatter (CIAB) and ODCOD optical depth
• CALIPSO-based estimates of cloud top LWC and 
𝑟𝑒 from (Hu et al. 2021)
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CPR inputs
(𝜎0 and TB94)

Lidar inputs
(CIAB, ODCOD 𝜏, 

cloudtop LWC 
and 𝑟𝑒 )

Aux inputs
(TCWV, SST, 

wind)

Random Forest 
Model

Cloud optical 
depth (𝜏)

Subadiabatic
model

Cloud-top 𝑟𝑒

Profile of cloud 
microphysics



ML Model Performance

r = 0.77
MAE = 3.41
Bias = +0.22

r = 0.76
MAE = 2.22 𝜇m
Bias = +0.05 𝜇m

r = 0.81
MAE = 27.6 g/m2

Bias = +2.1 g/m2



ML Case Study
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Key Points

1. Radar-based retrievals of low-cloud profiles have major deficiencies:
• Missed detection
• Precipitation contamination

2. (Sub)adiabatic theory in good agreement with radar observations for 
non-precipitating clouds.

3. Machine Learning (non-linear regression) can be used to exploit lidar 
observables and radar integral constraints to derive vertical profiles 
within reasonable uncertainties.
• This works even when Vis/NIR observations are missing!


