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Test using the Halifax scene




What is cross-talk ?
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But it is more like
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Modeling the Instrument transfer function
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And a good approximation to the correction Matrix is..
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R-B scattering line shape is BOTH
pressure and Temperature dependent !
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Figure 2: R-B spectrum at 300mb and 220 K (Orange).
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Figure 3: R-B spectrum at 1000mb and 245 K (Orange).
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Figure 4: Chi correction factor with 300 mb and 220 K as the reference point.
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Need for monitoring !

e ATLID will be periodically tuned by scanning the laser wavelength to
maximalize the Mie signal.

=» Cross-talk will be minimized

* But what are the exact values and what happened between tuning
operations and when is re-tunning necessary ?

=>» Need an effective means to monitor in orbit during normal operational mode
!



How to go about characterization and correction ?

Use Aerosol free

1. Signals (e.g. Assume true value of ATB,,. =0 Then ratio of Observed Mie/Ray
above 30 km) yields x (Ray =» Mie coefficient)
2. { ? J Once we know and x we need to find €. How ?
Use' Aerosol free Once we know € and x : Assume true value of ATB,,.. =0 and particle
3 Signals (e.g. Depol=0 and using expected value of Ray Depol then the polarization
above 30 km and cross-talk can be assessed.
upper Trop)
Use Aerosol free
4, Signals (e.g. Cross-talk corrected Relative signals can be absolutely calibrated !
above 30 km)




Mie=» Rayleigh cross-talk
correction/assessment.....

* Ray=>» Mie (x) coefficient can be accurately determined using high
altitude (aerosol-free) signals.

* Mie=>»Ray (€) coefficient is more problematic.

* |f true Ray return is << true Mie return, then € can be determined but..

* Need to use suitably optically thick clouds !
 |dentification of suitable cloudy regions can be non-trivial as
» Zero true Ray return =» attenuation = bad SNR |!

e Can not use ocean returns !
* Thus

* A technique that can use a wide variety of clouds is necessary !



Assume Bg, =0 method is problematic for
clouds
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€ (Ratio Method)
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If Ray input is assumed to be zero:
=>» € is given by the observed scattering ratio

But in reality
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(R, —I)(R -1)

Convergence is slow !
=>» Need optically thick clouds
=>» Attenuation will be a problem !

0=

Aside: Maybe the maximum observed scattering ratio from clouds can be
used...but this is likely very noise...



Some simple modelling....

X-talk corrected
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There are two main natural constrains
that are relevant dictated by the physics of
the lidar equation i.e.

1. The Pure Ray ATB profile must be
continuous at the layer boundaries

2. The Pure Ray ATB/atmos_den profile
can not have a positive slope w.r.t.
range from the lidar (egiv. Negative
slope with altitude).

It is easy to see when one is
over-correcting or...
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“Smoothest Rayleigh Path” (STRAP) method.

The (very-very close to) correct value of epsilon is
X-talk corrected the one which results in the
(€/2to ex 1.5) “shortest” path
X-talk corrected With X-talk With X-talk
/ / “shortest”” =» min variance in extinction profile
10 10 / =» smoothest path.
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Why does STRAP work ? (a quantitative view)
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LlTp
Norm_signals
Dem and

Land_flag

Steps 1-2

Loop in along-track

Detect surface and
Form surface mask

Calculate
Ray_clr ATB

End Loop in
along track

Steps 3-4

Loop in sgment

Find average
profiles and std of
excluding surface

points

Find Norm
calibration ratios
using average
Ray_clr ATB

Find Chi and
calibration ratios

End Loop in
segment

Fit Chiand Cal ratios
to along-track
position

Steps 5-8

— 4
Loop in Segment

Loop in Segment

Find eps STRAP

method

Find eps using
surface return
(if available)

End loop in segment

v

Estimate Phi_perp

Fit eps to along-
track position

Steps 9-10

End loop in segment

Fit Psi_perp to
along-track position

Step 11

Loop in
along-track

Calculate cross-talk
correction matrix

Calculate C_lid*K
matrix

Perform x-talk
correction and
Calibration

End loop in along-
track

Store results

Steps 12-14

Divide the frame into the desired number of segments
Simple average of the ATBs (before x-talk correction)

Average the data horizontally using Ray above 30 km to determine
initial calibration coefficients and .

Land-surface detection =» Masked average of Mie signal =» Direct eps
determination of €

Determination of € using the STRAP technique

Appropriate along-track smoothing/interpolation of x and € values.
Taking account uncertainties and a-priori values.

Examine Clear-air areas to assess polarization x-talk and calibration.



Test using the Halifax scene
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Figure 2: the swath of the high resolution simulation with 0.25 km grid-spacing and the seven
section of the separated simulation.
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Test using the Halifax scene

Height [km]

Example (Halifax Scene)

Figure 2: the swath of the high resolution simulati
section of the sepe

n with 0.25 km grid-spacing and the seven
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Ray = Mie cross-talk
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Curvature around

Best Path approach results minimum s being

used to assign an
uncertainty
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Combined
STRAP
assessments
(circles) and
land-return
based
assessments
(Triangles)
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Now !

rayleigh attenuated backscatter
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Reprocessing Halifax scene
Attenuated backscatter :

ECGP: Earlier !
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Summary and Outlook

€arthcat®

Problems with the L1 ATLID processor were noticed late...but not too late !

* Innovative robust methods were developed.
ATBD and working prototype code have bee delivered to ESA for implementation

Further monitoring can be done (likely at L2 ) !
» Use of background solar signals above suitable targets could
help with the Depol characterization.
* Assessing the relationship between layer depol and layer
integrated attenuated backscatter in water clouds (borrowing
a Calipso technique).




L1-ATLID Calibration and Crosstalk
Correction
(ECGP-L1 ATLID Delta/Post-Processor)
ATBD
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