

Landsat OLI Calibration Status and Validation of Sentinel-2 MSI

Esad Micijevic USGS/EROS Julia Barsi SSAI, NASA/GSFC Raj Rengarajan KBR, USGS/EROS Cal/Val teams at GSFC and EROS

Croatian coast OLI-2 4 Feb 2022

Outline

- Landsat Status
 - Radiometric stability
 - Solar diffuser stability
- Radiometric cross-calibration of MSI with Landsat
- Radiometric stability monitoring using PICS
- Co-registration Assessment of Archived Landsat-8 and Sentinel-2 orthorectified products
- Summary

Landsat Mission Status

- Landsat-9 launched 2 years ago
 - Spacecraft transmits all 14-bits of OLI data to improve radiometric accuracy for dark targets
 - L9 TIRS does not have the stray light feature present in L8 TIRS
 - Both instruments are performing to better than requirements
- Landsat-8 launched 10 years ago
- Landsat-7 ETM+ still operating
 - Mean equatorial crossing time as of Sep 2023: 07:55 am
 - nominal science mission has ended
 - Data are still being acquired and distributed
- Landsat mission ground station at EROS celebrated 50-year anniversary this year.

A 1970 site selection graphic indicating the best site for an antenna to receive Landsat signal when the satellite is acquiring data over the continental US.

Picture of USGS/EROS 50th celebration

Landsat OLI Radiometric Calibration Status

- Radiometric calibration is monitored by a suite of on-board calibrators
 - Three pairs of lamps
 - Two solar diffuser panels
 - Maneuvers to look at the moon
- Augmented by
 - Vicarious ground measurements
 - PICS
- Landsat-8 OLI has been stable to with ~1.3% since launch based on best assessment of on-board calibrators data
 - The absolute calibration of CA (Band 1) and Blue (Band 2) is actively adjusted to account for drift. The other bands are largely unchanged.
- Landsat-9 OLI has been more stable since launch than OLI was
 - The exponential decay in CA seen in OLI is not apparent
 - On-board calibration is stable to better than 0.2% across all bands
- UNDERFLY update #1: Landsat-9 OLI radiometric calibration was updated in Jan 2022 to account for radiometric offset between L8 OLI and L9 OLI. L9 archive was reprocessed before the release of data to public.
- UNDERFLY update #2: Further study indicated small adjustments to the radiometric offset would be beneficial. Entire L9 archive was reprocessed to account for the change in March 2023.

Solar Diffuser Stability

- June 2023: questions about S2 increase in response to solar diffuser
- OLI instruments have two solar diffusers

Working panel is used ~weekly Pristine panel is used semi-annually Diffusers are stowed inside the Calibration Assembly when not in use.

 None of the OLI diffusers indicates solar change of the magnitude indicated by the Sentinel plot

5

Landsat Relative Spectral Response

• L8 and L9 OLI spectral curves available at the NASA/GSFC and USGS websites

https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-instruments/oli-2-design/oli-2-relative-spectral-response https://landsat.usgs.gov/spectral-characteristics-viewer

 OLI and OLI-2 are close spectral matches given the spectral filters and the detectors came from the same production lots

Monitoring MSI with OLI

- Familiar suite of PICS sites used to monitor Landsat-8 OLI, Landsat-9 OLI, Sentinel-2A MSI and Sentinel-2B MSI.
- CEOS 20x20km region of:
 - Libya-4
 - Egypt-1
 - Algeria-5
 - Algeria-3
- Apply Spectral Band Adjustment Factor to make MSI reflectances "OLI-like"

Egypt-1

≈USGS

Spectral Differences between OLIs

- Spectral differences are compensated for by using a regionspecific Spectral Band Adjustment Factor
- New SBAFs have been calculated for Landsat-9 OLI and the MSIs
- There are larger differences in the Landsat Green bands between the Algeria desert sites and the dryer Libya/Egypt desert sites

Spectral Band Differences

Reflectance Calculation

 $\rho_{OLI} = -$

- OLI TOA reflectance
- Where:
 - ρ_{OLI} is top-of-atmosphere reflectance
 - M and A are reflectance scaling factors in metadata
 - Q_{cal} is image digital count
 - θ is solar zenith angle (90-solar elevation angle from metadata or for ROI)
- MSI TOA reflectance
- Where:
 - ρ_{MSI} is top-of-atmosphere reflectance
 - Q_{cal} is image digital count
 - QUANTIFICATION_VALUE is provided in the metadata
 - RADIOMETRIC_OFFSET is provided in the metadata
- Convert MSI TOA reflectance to OLI equivalent reflectance

$$^{< v4} \rho_{MSI} = \frac{Q_{cal}}{QUANTIFICATION_VALUE} \quad ^{v4} \rho_{MSI} = \frac{Q_{cal} * RADIOMETRIC_OFFSET}{QUANTIFICATION_VALUE}$$

 $\frac{M * Q_{cal} + A}{cos\theta}$

$$\rho_{MSI}' = \rho_{MSI} * SBAF$$

Recent Coincident Pairs

Cross Calibration Coincident Overpass Results Sentinel-2A

Cross Calibration Coincident Overpass Results Sentinel-2B

Cross Calibration Coincident Overpass Results S2A Summary

- L8 and S2A agreement remains consistent with previous results
 - Green, Red, SWIR2 within 0.3%
 - NIR (B8A) within 0.7%
 - SWIR1 within 1.2%
 - No significant change since March 2021
- L9 and S2A is based on small dataset – General trends hold
- To be investigated: double ratio comparison between L8 and L9 using S2A as a reference
 - Green and SWIR2 differences look out-of-family

Cross Calibration Coincident Overpass Results S2B Summary

- L8 and S2A agreement : small data set, only includes data acquired after V4.0 processing
 - Green, Red, NIR (B8A) within 0.35%
 - CA, Blue better agreement
 - SWIR1 (B11) within 0.3% (no change)
 - SWIR2 (B12) within 1.3% (no change)
- L9 and S2B agreement : small data set – General trends hold
- Also look at using S2B as reference for L8/L9 double ratio

PICS Lifetime Stability Trending

- Plots only include the sites currently being updated
 - S2A: Only Libya-4 and Algeria-3
 - S2B: Only Egypt-1 and Algeria-5
- S2A MSI shows stability over desert sites within 0.1% per year.

 S2B MSI shows stability over desert sites to within 0.1% per year.

Background : Landsat and Sentinel-2 Archives

- For Collection-2 release (Dec 2020), the Landsat ground reference dataset was updated using the Sentinel-2 Global Reference Image (GRI)
 - The objective was to improve the co-registration between Landsat and Sentinel-2 terrain-corrected products
 - All Collection-2 Landsat products are produced using the updated Landsat ground reference
 - The entire Landsat archive was reprocessed to improve the absolute and relative accuracies of the Landsat products across all missions
- Prior to 2021, all Sentinel-2 scenes were processed without using GCPs
 - The GRI dataset was in the process of development prior to 2021
 - The Sentinel-2 processing system had to be modified to use the GRI dataset
- Since March 2021, the Sentinel-2 processing system began processing orthorectified products using the GRI dataset
 - Current baseline processes all data (forward acquisition) using the GRI dataset to improve the temporal registration accuracy
 - Backward processing of the older data is in progress and will be completed by the end of 2023 (or early 2024)

Comparison of Landsat-8 and Sentinel-2 products

- Collection-2 Landsat-8 L1T products were compared with the existing Sentinel-2 L1C products to assess the co-registration error temporally
 - Assessed over 17 sites (tiles) distributed globally
- A couple of tiles for each continent
- Cloud-free (less than 10%) L8 and S2 product pairs were ⁷ used
- L8 products compared were within 32 days of acquisition (2 repeat cycles of L8) from S2 products to reduce seasonal or temporal differences
 - Reduces registration uncertainty

USGS

- Scenes acquired between 2015 2022 were compared
- Compared Band 8 of L8 with Band 4 of S2
- S2 Band 4 was resampled to 15 m to match L8 Band 8

Comparison of Landsat-8 vs. Sentinel-2 products

- L8 vs. S2 products currently in the archive were compared
 - S2A and S2B are considered as S2 products
 - 1378 scenes were compared, of which 272 were S2 scenes processed with GRI
 - Root Mean Square difference radial (RMSr): 3.0 m
 - Co-registration error between L8 and S2 orthorectified products
 - Without GRI :
 - CE90: 9.4 m
 - Root Mean Square difference radial (RMSr): 6.2 m
 - With GRI :

USGS

- CE90: 4.6 m
- Root Mean Square difference radial (RMSr): 3.0 m

Comparison of Sentinel-2 vs. Sentinel-2 products

• Sentinel-2 products currently in the archive were compared

- Temporal co-registration error was assessed for Sentinel-2 products over 17 tiles distributed globally
 - GRI vs. GRI (2084 scenes)
 - Non-GRI vs. Non-GRI (6994 scenes)
- Co-registration error between S2 and S2 products²
 - Without GRI :
 - CE90: 8.8 m
 - Root Mean Square difference radial (RMSr): 5.8 m
 - With GRI :
 - CE90: 3.5 m
 - Root Mean Square difference radial (RMSr): 2.3 m
 - A similar comparison over the same geographic region showed very good co-alignment between Landsat orthorectified products
 - L8 vs L8: 1.7 m (CE90: 3 m)
 - L8 vs L9: 1.7 m (CE90: 3 m)
 - This is expected as all the Landsat products use the same ground reference

Summary

- Radiometry
 - All four instruments are exhibiting excellent radiometric performance
 - Agreement generally better than 1%
 - Landsat-9 OLI radiometric calibration was adjusted to better agree with Landsat-8 OLI; all publicly available products have been processed with the adjusted calibration
 - Coincident overpasses of pseudo-invariant calibration sites allow for cross calibration of MSI with OLI
 - The radiometric offset between S2A and S2B has been eliminated
 - Look at using S2A and S2B as reference for L8/L9 comparison
 - PICS lifetime trending
 - S2A MSI calibration is stable to within 0.1%
 - S2B MSI calibration is stable to within 0.1%
- Geometry
 - When GRI is used in the Sentinel-2 processing system, the Landsat-8 (and Landsat-9) orthorectified products are registered with the S2 products to better than 3 m
 - 4.6 m (CE90)
 - A similar assessment for Sentinel-2 data, when GRI is used, showed a very good co-alignment between orthorectified products
 - 3.5 m (CE90)
 - Small co-registration errors between L8 and S2 products will benefit the remote sensing community in time-series analysis without a need for additional registration and resampling
 - The ECCOE quarterly report publishes these comparisons for the specific quarter
 - This geometry study has been submitted to the RSE journal (currently under review)

backup

Solar Diffuser Stability

- Landsat-8 response to diffuser has changed significantly since launch, but since Jan 2022, has changed less than 0.1%.
- Landsat-9 response to diffuser has changed as much as 0.3%, but that is expected based on the early lifetime trends of Landsat-8
- Pristine diffuser on both instruments indicate no

PICS Lifetime Trending Landsat-8 and Sentinel-2

Landsat OLI RSRs

NASA

Landsat OLI RSRs

Zoom of the Sentinel-2 vs. Sentinel-2 plot, time range beginning from 2021

• Co-registration error between S2 and S2 products

≈USGS

• Without GRI: 5.8 m (RMSr), With GRI: better than 2.3 m (RMSr)

