

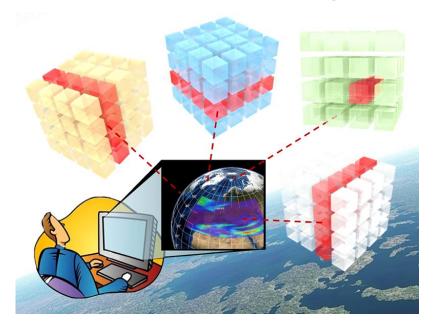
From Analysis-Ready Data to Analysis-Ready Services: Challenges & Helpers for EO Service Providers

ESA Big Data from Space, 2019-feb-20

Peter Baumann

Jacobs University | rasdaman GmbH

Motivation


- Analysis-Ready Data (ARD)
 - USGS Landsat team in 2017
 - rapid uptake, variety of interpretations
 - which, how-ever, all agree that EO data need to be offered in a way better suitable for consumption in particular by non-pro--gramm-ers and non-EO experts.
- CEOS Analysis Ready Data for Land (CARD4L)
 - "immediate analysis with a minimum of additional user effort and interoperability both through time and with other data-sets"
 - metadata requirements, radiometric & geometric calibration, solar & view angle correction, atmospheric correction (optical) & topography / incidence angle correction (radar)

Motivation / contd.

- homogenized, aggregated, standards-conformant offerings
 - Abstract from storage & encodings
 - "going from files to pixels"
 - WCS in addition to WMS, WMTS

- Easy navigation, extraction, aggregation along space & time
 - Files & scenes → n-D datacubes
- "go take the data, do analysis yourself" → "build your product on the go"
 - server-side analysis capabilities, "ship code to data"
 - What code? How complex? → quality of service
- analysis-ready data → analysis-ready services

Case Study: SAFE

- Sentinel data delivered in SAFE format
- Server effort for analysis tasks?
- Zip archive → extra tool invocation for extracting image file
 - subdirectories
- JPEG (lossless) → extra CPU cycles for pixel reconstruction
 - Wavelets suboptimal for spatio-temporal subsetting
- File granularity: 100x100km → hundreds of MB...GB
 - Benchmarks [Furtado et al]: ~3 MB suitable
- SAFE is archive format, not service format!

Analysis-Ready: Requirements v0.1

- granularity for efficient spatio-temporal access, i.e.: x/y/z/t
 - re-tiling scenes=slices → cubelets
 - Prefer file format with internal tiling
 - Tiling as configuration parameter, not hardcoded API feature (ex: WMTS)
- Minimize pixel reconstruction
 - No wavelets (soft requirement)
- Store data analysis-ready
 - Construction on the fly inefficient, numerical inconsistencies
 - Provide authoritative values readily available in database / archive
 - Not Level 1a, 1b, but Level 1c+ (error corrected, radiometrically corrected, orthorectified)

Analysis-Ready: Requirements v0.1 / contd.

- Ship code to data: high-level server-side filtering & processing language
 - Low-level ftp, RESTful sub-setting APIs, etc: no substantial server-side processing
 - procedural source code (ex: python): major security hole
 - high-level, declarative language (ex: SQL, OGC WCPS): safe in evaluation
- Transparent federation
 - Fusion across data centers: not in client, but in server
 - Intelligent orchestration, optimization of data exchange, processing distribution


Analysis-Ready: Requirements v0.1 / contd.

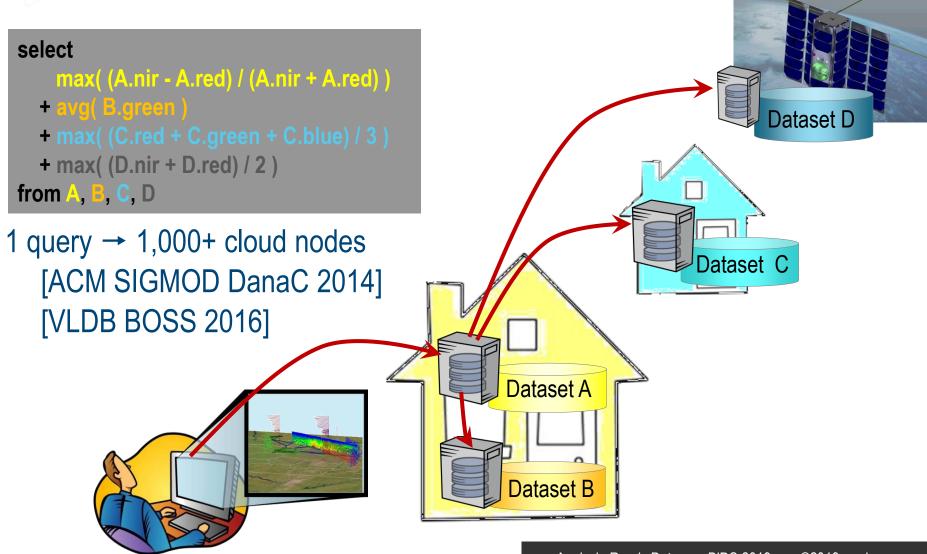
- Web Coverage Service (WCS): simple to use, modular, functionality-rich
 - Core: subsetting + formatting; Extensions: more facets

```
http://www.acme.com/wcs ? SERVICE=WCS & VERSION=2.0
```

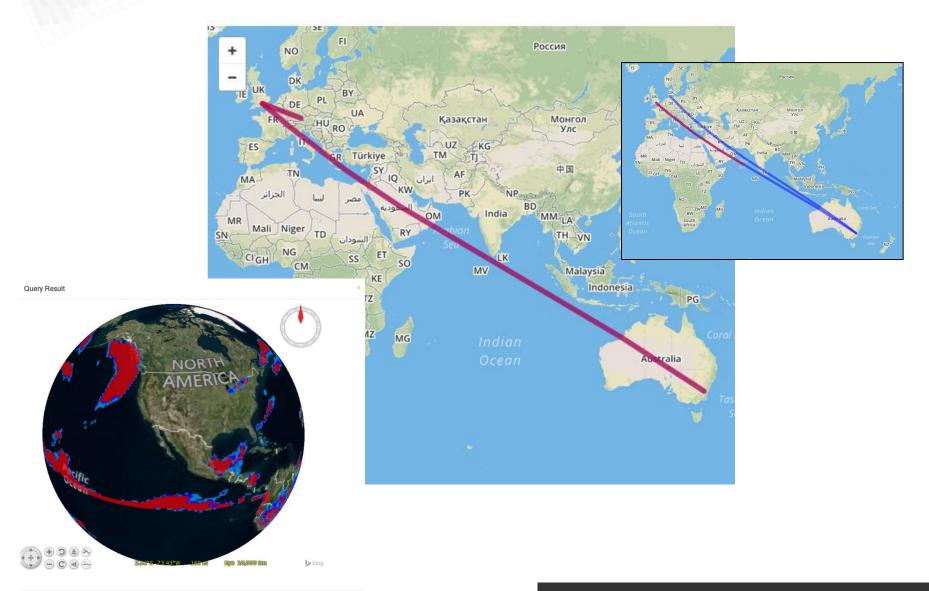
- & REQUEST=GetCoverage & COVERAGEID=c001
- & SUBSET=Long(100,120) & SUBSET=Lat(50,60) & SUBSET=time("2009-11-06T23:20:52")
- Web Coverage Processing Service (WCPS) datacube analytics

```
for $c in ( M1, M2, M3 )
where some( $c.nir > 127 )
return encode( $c.red - $c.nir, "image/tiff" )
```

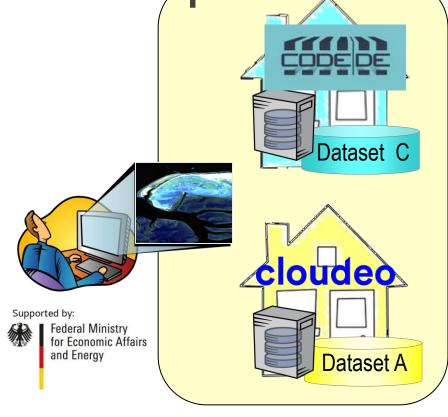

Analysis-Ready Data :: BiDS 2019 :: ©2019 rasdaman


Implementation Feasibility

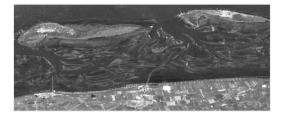
- Requirements doable with today's technology, such as databases
- Ex: rasdaman Array DBMS
- Declarative query interface: WCPS, internally mapped to Array SQL
 - ISO SQL 9075-15:2018: Multi-Dimensional Arrays (MDA)
 - Coined datacube services / Array Databases [Baumann 1992]
 - Comp Sci PhD theses 1999...2018
- Versatile ETL suite for automated cleansing & ingestion
- Proven on 2.5+ PB,
 1000+ cloud parallelization,
 intercontinental federation ♥

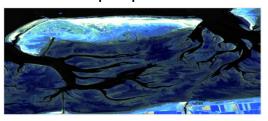

Parallel, Distributed Processing

Analysis-Ready Data :: BiDS 2019 :: ©2019 rasdaman


Federation in EarthServer

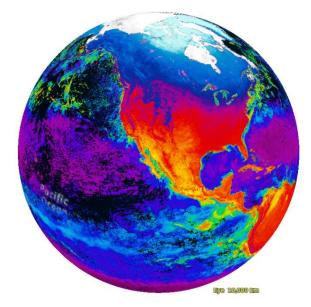
Public/Private Datacube Partnership


- BigDataCube:
 - public CODE-DE Sentinel hub
 - commercial cloudeo services
 - Security + billing
- Interactive datacube frontend complementing batch Hadoop
- CODE-DE adding homogenized data


S1 ship detection

time-avg'ed S1 area

S2 atmosph. penetration



Conclusions

- Analysis-Ready good for users
 - Spatio-temporal data require datacubes
- OGC coverage data & service model
 - regular & irregular grids
 - easy-to-use functionality

- SQL : COBOL vs WCPS : python
- Federation
- Workload shift: end users → data providers
 - Archive formats → homogenized, processing-reauy

