

Datacubes as a tool for Analysis Ready Data Inter-Comparison

Simon Oliver

Director of Operations, National Earth and Marine Observations

Lan-Wei Wang, Medhavy Thankappan, Tina Yang, Fuqin Li, Joshua Sixsmith

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2017

Overview

- Context
- Surface reflectance correction
- Understanding the differences
- Impacts on information products using:
 - self-normalising ratios of reflectance
 - reflectance thresholds
- Experimental design and broader objectives
- Examples using Landsat and OpenDataCube

Big Data from Space 2019

• Future work

GEOSCIENCE AUSTRALIA

Context

- Analysis Ready Data increasingly adopted
- A range of surface reflectance corrections are possible
- ARD from data providers could replace in-house capabilities
- How should agencies with in-house capability form an evidence-based decision on this?
- Datacubes have allowed users to focus on analysis without being concerned with data correction
- Datacubes can also inform users about the data they contain.

GEOSCIENCE AUSTRALIA

GEOSCIENCE AUSTRALIA Commonwealth of Australia (Geoscience Australia) 2017

Analysis Ready Data

The core elements in ARD preparation may include:

- Geometric correction for co-registration
- Quality masks, e.g., null data, bad data and cloud
- Atmospheric correction
- Bidirectional Reflectance Distribution Function (BRDF) correction
- Terrain illumination correction in areas sensed on mountainous areas
- Sun and sky glint correction in areas sensed on open water surfaces

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2017

Surface Reflectance products for Landsat

USGS Surface Reflectance:

- 1. Landsat 4 to 7 Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
- 2. Landsat 8 Landsat Surface Reflectance Code (LaSRC)

Geoscience Australia "wagl" system Landsat 5/7/8:

- 1. Lambertian
- 2. Nadir Bidirectional Reflectance Distribution Function (BRDF) Adjusted Reflectance (NBAR)
- 3. Nadir BRDF Adjusted Reflectance with Terrain Illumination Correction (NBART)

Landsat Surface Reflectance Correction

Correction	USGS L2	GA Lambertian	GA NBAR	GA NBART
BRDF: - solar angle	Х	Х	\checkmark	\checkmark
BRDF: - view angle	Х	Х	\checkmark	\checkmark
Atmospheric: - solar angle - view angle	\checkmark	\checkmark	\checkmark	\checkmark
Terrain illumination	Х	Х	х	\checkmark
Adjacency	Х	Х	Х	Х

© Commonwealth of Australia eoscience Australia) 2017

GEOSCIENCE AUSTRALIA © Commonwealth of Australia (Geoscience Australia) 2017

Terrain illumination correction

GEOSCIENCE AUSTRALIA @ Commonwealth of Australia (Geoscience Australia) 2017

Open Data Cube

- Underpins numerous national and continental-scale initiatives including Digital Earth Australia
- Reduces barriers to non-expert user analysis
- Provides a means for efficiently analysing time-series at scale
- Also can be used to compare collections of similar products

Big Data from Space 2019

Digital Earth AUSTRALIA

Experimental design

- 1. Assess ARD correction parameter sensitivity
- 2. Assess **temporal stability** comparison of measurements from corrections through time (GA Lambertian/NBAR/NBART vs LEDAPS/LaSRC)
- 3. Field **validation** comparison with in-situ measurements (historical and current)

Big Data from Space 2019

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2017

Landsat Path/row	Number of scenes	Sensor and acquisition date
091/084	927	
092/084	896	
093/084	887	Landsat 5/7/8; 1986 ~ 2017
091/086	879	
092/086	892	
093/086	812	
094/074	894	
095/074	897	
096/074	895	
108/082	855	
109/082	858	
110/082	857	

Low vegetation cover areas (low BRDF)

GEOSCIENCE AUSTRALIA Commonwealth of Australia 2017

Method

- Level 1 collection 1 data retrieved from USGS
- USGS Level 2 Surface Reflectance products acquired on-demand through ESPA
- Geoscience Australia modified production code to match the USGS Level 2 product (assumes lambertian / ideal diffuse target)
- Level 2 data indexed to ODC instance
- Python tool developed to enable 1:1 comparison
- Use inter-comparison tool to interrogate datasets

GEOSCIENCE AUSTRALIA

Source products	Is5_ard Is7_ard		_		
	ISO_aro				
Sub product to compare	lambertian		~		
Start Date	2018-04-01				
End Date	2018-12-31				
Spatial location	Single Ion/lat	Multiple Ion/lat	Single polygon	Multiple polyg	
	Longitude	142.9384	>]	
	Latitude	-22.5275	>]	
	Window Size	3	~		
Ouptut folder	/g/data/v10/tmp/	intercomparison			
	E	xtract Products			

Big Data from Space 2019

GEOSCIENCE AUSTRALIA © Commonwealth of Australia (Geoscience Australia) 2017

Normalising ratios - NDVI

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2017

Thresholds on spectra

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2017

© Commonwealth of Australia (Geoscience Australia) 2017

SW Facing hill slope USGS and GA Lambertian

Band nir at (147.044075, -37.08125278) with 3x3 window

NE Facing hill slope – NIR band USGS Lambertian - GA NBART

Band nir at (147.0484056, -37.08065556) with 3x3 window

Upcoming features

- Generic sensor support Landsat, Sentinel-2 or any
 OpenDataCube product
- Interactive map for query selection
- Optional matching of time-series pairs
- Update tool release May 2019
- Results of sensitivity and inter-comparison study to be presented at Living Planet Symposium.

Acknowledgements

The authors wish to acknowledge the contribution of Landsat data by USGS EROS to this study

© Commonwealth of Australia (Geoscience Australia) 2017

Thanks!

Simon Oliver

simon.oliver@ga.gov.au

GEOSCIENCE AUSTRALIA @ Commonwealth of Australia (Geoscience Australia) 2017