

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Disclaimer

The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

Validation of the new SLSTR basic cloud mask prototype Jan Wevers^a, Caroline Cox^b, Claire Henocq^c, Michael Paperin^a, Carsten Brockmann^a

- ^a Brockmann Consult GmbH, 21029 Hamburg, Germany
- b Science and Technology Facilities Council, SN2 1FL, Swindon, United Kingdom
- CACRI, 06904 Sophia Antipolis, France

ESA UNCLASSIFIED - For ESA Official I

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Overview of the talk

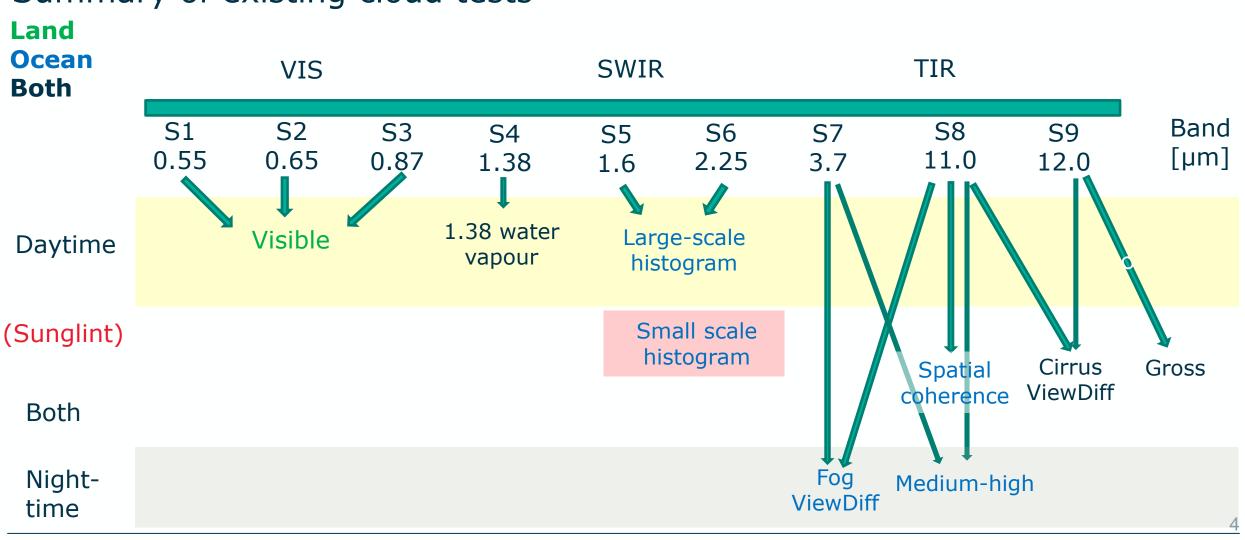
- Objective & scope
- Summary of existing tests
- Validation method/dataset PixBox expert pixel collection
- Validation results
- Conclusion & Outlook

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

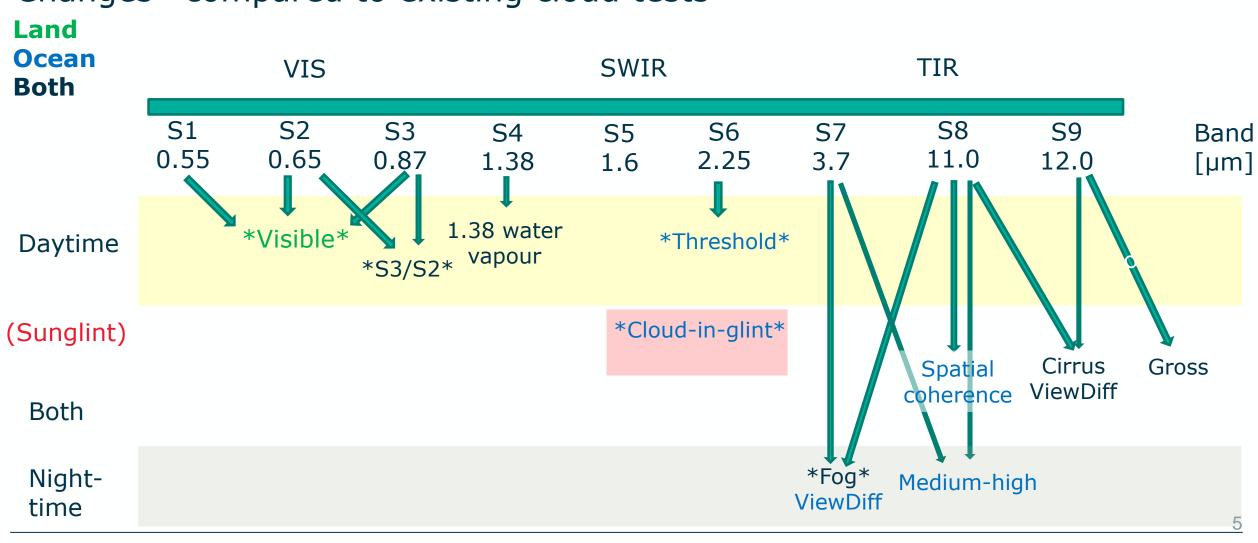
Objective and scope of the new algorithms

- Update current collection of Level 1 cloud tests, and fully exploit features in SLSTR products that were not available for (A)ATSR
 - S6 (2.25 micron) channel
 - S4 (1.38 micron) channel
 - Meteorological data
 - Land information (biomes or other)
- Retain fast processing, simplify where possible, improve performance
- The proposed work was split into two parts
- The first study, reported here, looked at the following
 - Better sunglint identification, and detection of cloud in glint
 - Implementing a new 2.25 µm threshold test
 - Implementing new test using S3 and S2 channels
 - Reviewing and updating land visible cloud test
 - Switching on fog test over land



Summary of existing cloud tests

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



Changes* compared to existing cloud tests

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Definition of new flags in Prototype Processor (PP) compared to L1: **Ocean**

Sunglint test

- L1 used geometry only
- PP uses geometry and wind velocity from met data in Cox and Munk model to predict glint. Impacts new SWIR tests

2.25 test

- L1 used S6 within histogram test (dynamic threshold) and not run on all pixels. Often blocky appearance
- PP applies thresholds to all (non-glinted) ocean pixels based on solar and view geometry, aims for smoother appearance

S3/S2 test

- L1 NA
- PP applies thresholds to all ocean and most land pixels.

Cloud-in-glint

- L1 used 1.6 and 2.25 'small scale histogram test' (uniformity test) when in glint
- PP applies simpler approach, checking non-glinted view to detect warmer clouds missed by TIR

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Definition of new flags in Prototype Processor (PP) compared to L1: **Land**

Visible test

- L1 applied to all land pixels, missed light cloud
- PP applied to all land pixels, with an extended LUT used over 'greener' regions

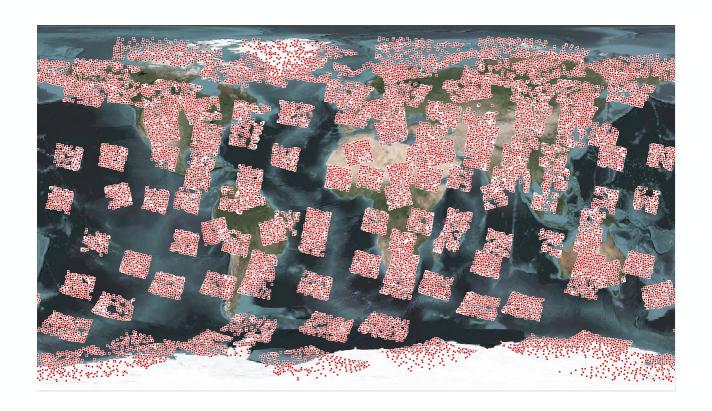
S3/S2 test

- L1 NA
- PP applies thresholds to all ocean and most land pixels.

Fog test

- L1 was switched of over land due to significant over-masking
- PP operational over land, but uses prior knowledge of land emissivity to disable over certain regions

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



Validation method/dataset

- The SLSTR PixBox validation dataset consists of 30750 manually collected pixels
- The expert pixel collection was conducted on SLSTR L1 products resampled to 1km resolution
- The collection has been limited to SLSTR data of Sentinel-3 A

- SLSTR data from three dates have been selects: 15.03., 15.06. & 15.09.2021
- The following processing baselines are applicable:
 - Products from Mar 2021:
 - SLSTR-A: PB 2.73
 - Products from Jun and Sep 2021:
 - SLSTR-A: PB 2.77

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Validation method/dataset

- The collection distinguishes between different cloud types (level of transparency) in the VNIR part of the spectrum
- Additionally, differences in cloud opacities for SWIR and TIR channels are collected if deviating from VNIR
 - Not used in current analysis
- Additional features and information are collected with each pixel allowing a very detailed analysis

Distr. of the cloud classification in the VNIR range of the spectrum

Opaque			34.6%
Clear			35.7%
Semi-transparent			29.7%
	Thick	3.2%	
	Average	16.8%	
	Thin	6.3%	
	Haze	0.8%	
	Spacially mixed	2.1%	
	Fog	0.2%	
	Others	0.4%	

Distr. of cloud classification in SWIR and TIR range when deviating from VNIR.

SWIR	None	87.6%
	Opaque	8.8%
	Semi-transparent	2.5%
	Haze	0.7%
	Clear	0.5%
TERM	None	82.8%
	Opaque	10.3%
	Semi-transparent	4.5%
	Haze	1.9%
	Clear	0.5%

Day	81.7%
Night	16.2%
Twilight	2.3%

LAND			44.4%
	Land	29.7%	
	Mountain	2.1%	
	Desert	0.6%	
	Urban	4.0%	
	Salt/dry lake	0.6%	
	Snow/ice Land	6.6%	
	Wetland	0.4%	
	Atoll	0.4%	
WATER			55.6%
	Coastal Waters	18.4%	
	Open ocean	33.7%	
	River	1.5%	
	Lake	2.1%	

Floating Ice	6.7%
Oversaturation	2.7%
Glint	5.7%
Aerosoles	1.2%

Validation Results

- All surfaces (daytime and nighttime)
- Ocean and coastal water (daytime)
- Ocean and coastal water under glint conditions (daytime)
- Land surfaces (daytime)
- Inland water (daytime)
- Land surfaces (nighttime)

Validation results – all surfaces – daytime and nighttime

- Overall slight decrease in accuracy, but
 - Good improvement in UA clear
 - Cost: Small increase in commissioning error of clear observations as cloud

SLSTR 2022 nadir cloud validation - all surfaces - Level 1 summary cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	8595	1354	9949	86.4	13.6
\ nadir	CLOUD	2395	17410	19805	87.9	12.1
SLSTR	Sum	10990	18764	29754		
	PΑ	78.2	92.8		OA:	87.4
	E	21.8	7.2		BOA:	85.5

Scotts Pi: 0.723 Krippendorfs alpha: 0.723 Cohens kappa: 0.724 SLSTR 2022 nadir cloud validation - all surfaces - Prototype summary_cloud -

In-Situ Database

SLSTR nadir	Class	Clear	Cloud	Sum	U A	E
	CLEAR	7938	773	8711	91.1	8.9
	CLOUD	3052	17991	21043	85.5	14.5
	Sum	10990	18764	29754		
	РΑ	72.2	95.9		OA:	87.14
	E	27.8	4.1		BOA:	84.05

Scotts Pi: 0.709 Krippendorfs alpha: 0.709 Cohens kappa: 0.711

Validation results - ocean and coast water - daytime

Overall increase in accuracy

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

- Slight improvement in UA clear
- Reduction of commissioning error of clear as cloud probably due to glint improvements. Let's have a look!

SLSTR 2022 nadir cloud validation (DAY) - ocean surfaces - Level 1 summary cloud -

In-Situ Database

SLSTR nadir	Class	Clear	Cloud	Sum	U A	E
	CLEAR	3164	228	3392	93.3	6.7
	CLOUD	830	8952	9782	91.5	8.5
	Sum	3994	9180	13174		
	PΑ	79.2	97.5		OA:	91.97
	E	20.8	2.5		BOA:	88.35

Scotts Pi: 0.8 Krippendorfs alpha: 0.8 Cohens kappa: 0.801 SLSTR 2022 nadir cloud validation (DAY) - ocean surfaces - Prototype summary_cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	E
	CLEAR	3322	232	3554	93.5	6.5
IIadii	CLOUD	672	8948	9620	93.0	7.0
JEJIN	Sum	3994	9180	13174		
	РΑ	83.2	97.5		OA:	93.14
	E	16.8	2.5		BOA:	90.35

Scotts Pi: 0.832 Krippendorfs alpha: 0.832 Cohens kappa: 0.832

Validation results – ocean and coast water under glint conditions

- Overall slight increase in accuracy
 - Slight improvement in UA clear
 - Reduction of commissioning error of clear surfaces under glint condition as cloud

SLSTR 2022 nadir cloud validation (DAY) - open ocean glint surfaces - Level 1 summary_cloud -

In-Situ Database

SLSTR nadir	Class	Clear	Cloud	Sum	U A	E
	CLEAR	542	19	561	96.6	3.4
	CLOUD	72	275	347	79.3	20.7
	Sum	614	294	908		
	PΑ	88.3	93.5		OA:	89.98
	E	11.7	6.5		BOA:	90.9

Scotts Pi: 0.78 Krippendorfs alpha: 0.78 Cohens kappa: 0.781 SLSTR 2022 nadir cloud validation (DAY) - open ocean glint surfaces - Prototype summary_cloud -

In-Situ Database

SLSTR nadir	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	557	17	574	97.0	3.0
	CLOUD	57	277	334	82.9	17.1
	Sum	614	294	908		
	РΑ	90.7	94.2		OA:	91.85
	E	9.3	5.8		BOA:	92.45

Scotts Pi: 0.819 Krippendorfs alpha: 0.819 Cohens kappa: 0.82

Validation results – land surfaces during daytime

Overall slight decrease in accuracy

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

- Good improvement in UA clear
- Cost: increase in commissioning error of clear surfaces as cloud

SLSTR 2022 nadir cloud validation (DAY) - land surfaces - Level 1 summary_cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	Е
SLSTR nadir	CLEAR	3204	425	3629	88.3	11.7
	CLOUD	510	4288	4798	89.4	10.6
	Sum	3714	4713	8427		
	PΑ	86.3	91.0		OA:	88.9
	E	13.7	9.0		BOA:	88.65

Scotts Pi: 0.774 Krippendorfs alpha: 0.774 Cohens kappa: 0.774 SLSTR 2022 nadir cloud validation (DAY) - land surfaces - Prototype summary_cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	2911	271	3182	91.5	8.5
5	CLOUD	803	4442	5245	84.7	15.3
252	Sum	3714	4713	8427		
	РΑ	78.4	94.2		OA:	87.26
	E	21.6	5.8		BOA:	86.3

Scotts Pi: 0.736 Krippendorfs alpha: 0.736 Cohens kappa: 0.737

Validation results – inland water during daytime

- Overall high decrease in accuracy
 - Minimal improvement in UA clear
 - High increase in commissioning error of clear as cloud

SLSTR 2022 nadir cloud validation (DAY) - inland water - Level 1 summary_cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	E
	CLEAR	826	16	842	98.1	1.9
SLSTR nadir	CLOUD	74	81	155	52.3	47.7
SLSTR	Sum	900	97	997		
	РΑ	91.8	83.5		OA:	90.97
	E	8.2	16.5		BOA:	87.65

Scotts Pi: 0.591 Krippendorfs alpha: 0.591 Cohens kappa: 0.594

SLSTR 2022 nadir cloud validation (DAY) - inland water - Prototype summary cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	667	10	677	98.5	1.5
k nadir	CLOUD	233	87	320	27.2	72.8
SLSIR	Sum	900	97	997		
	PΑ	74.1	89.7		OA:	75.63
	E	25.9	10.3		BOA:	81.9

Scotts Pi: 0.263 Krippendorfs alpha: 0.263

Cohens kappa: 0.314

Validation results – land surfaces during nighttime

- Overall improvement in accuracy due to new fog test
 - Good improvement in UA clear

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Cost: increase in commissioning error of clear surfaces as cloud

SLSTR 2022 nadir cloud validation (NIGHT) - land surfaces - Level 1 summary cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	E
	CLEAR	718	452	1170	61.4	38.6
\ nadir	CLOUD	4	1300	1304	99.7	0.3
SLSTR	Sum	722	1752	2474		
	PΑ	99.4	74.2		OA:	81.57
	E	0.6	25.8		BOA:	86.8

Scotts Pi: 0.609 Krippendorfs alpha: 0.609 Cohens kappa: 0.622 SLSTR 2022 nadir cloud validation (NIGHT) - land surfaces - Prototype summary_cloud -

In-Situ Database

	Class	Clear	Cloud	Sum	U A	E
	CLEAR	529	190	719	73.6	26.4
nadır	CLOUD	193	1562	1755	89.0	11.0
SLSIR	Sum	722	1752	2474		
	PΑ	73.3	89.2		OA:	84.52
	E	26.7	10.8		BOA:	81.25

Scotts Pi: 0.625 Krippendorfs alpha: 0.625 Cohens kappa: 0.625

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Conclusion

- Very good improvements for ocean and glint.
 - Ocean: Simpler threshold-based tests (S3S2R and 2.25) achieve better results and improve performance
 - Glint: Simpler cloud-in-glint test achieves better results compared to complex tests (L1) and improves performance
- Improvement over land (UA clear) on the expanse of commission error.
 - Daytime: S3S2R test over land causes high commission error of clear as cloud -> lower OA
 - Nighttime: New fog test leads to overall improvement
- Lower performance over inland water, with slight increase on UA clear

Outlook

- Cause of issues (land & inland water) currently under investigation -> most likely S3S2R test
- Improvements to the S3S2R will be investigation.

Thank you for the attention!