

Estimating Icelandic Mass Balance from Multi-Mission Satellite Altimetry

¹Johan Nilsson

¹Jet Propulsion Laboratory, California Institute of Technology © 2024. All rights reserved

Outline for Presentation

- Icelandic glaciers
- Missions and data
- Methodology
- Elevation change
- CryoSat-2 SWATH and ICESat-2 synergies
- Mass balance
- Mission's of opportunity

Icelandic Glaciers

- The volume of glaciers in Iceland (\sim 3,400 km³ in 2019) corresponds to about 9 mm of potential global sea level rise.
- Iceland is located in a region of maritime climate in the middle of the North Atlantic Ocean with relatively cool summers, mild winters, and high precipitation.
- Hence Icelandic glaciers are highly affected by atmospheric forcing (surface mass balance).
- The annual mass balance of the ice caps in Iceland has been estimated from field measurements since ~1990's.
- Geodetic techniques such as laser and radar altimetry have also been used to estimate mass balance for Icelandic glaciers starting with ICESat in 2003.
- Here we will present a geodetic record spanning two decades (2003-2023) combining several different altimeters and techniques.

Aðalgeirsdóttir et al (2020): Glacier Changes in Iceland From ~1890 to 2019. doi: 10.3389/feart.2020.523646

Missions & Data

- ICESat (2003-2009)
 - Release 34
- CryoSat-2 (2010-Present)
 - Baseline-E (20 Hz data)
 - In-house SWATH processing
- ICESat-2 (2018-Present)
 - ATL06 Release 006
- ArcticDEM
 - Digital elevation model 100 m resolution
- Randolph Glacier Inventory (RGI 7.0)
 - Iceland glacier outlines

Methodology

- Read data and apply necessary corrections for all missions
- Compute elevation change and time series for each mission
- Define hypsometric relationships (dh versus height) for needed extrapolation using an external DEM.
- Align time series using least-squares adjustment to cross calibrate time series.
- Estimate Mass Balance using density assumption of 850 kg m⁻³
- Methodology, processing pipelines and code available in JPL's "<u>captoolkit</u>".

Elevation Change: ICESat

Elevation Change: CryoSat-2 SWATH

Elevation Change: ICESat-2

CryoSat-2 / ICESat-2 Synergies

• Synergies vital for improving estimates of "Mass Balance"

- Utilizing strengths and removing weaknesses
- Especially for SWATH processing
- Quality assessments
 - Roll Angle Bias (static and time variable)
 - Accuracy and Precision
 - Uncertainty directly linked to Mass Balance
- Time variable Radar Penetration
 - Time variable density
 - Possible estimation of snow-depth

Quality Assessments: SWATH and ICESat-2

Mean ± Standard Deviation: -1.1 ± 3.5 m

Radar Penetration Bias

sa

sa

Mission's of Opportunity: Sentinel-6

- SAR-missions such as Sentinel-3 and Sentinel-6 can provide improved mapping of both ice sheets and glaciers.
- Have not been fully utilize due to limitations in topographical sampling (not interferometric slope induced error).
- Sentinel-6 is of interest even though it only covers ± 66 degrees latitude; it does provide coverage for Icelandic and Alaskan glaciers.
- It's main contribution is its higher temporal resolution of ~10 days compared other "Cryosphere" altimeters of ~30 days.
- This would allow for improved sampling of geophysical signals for these regions not possible with other missions.
- Sentinel-6 does not have interferometric capabilities hence there is a need to correct for surface slope as the return is not from nadir.
- This can be achieved using an extrarenal DEM to correct the range to nadir (simplest approach).

Elevation Change: Sentinel-6

sa

· e esa

Summary

- Estimated mass balance of -8.3 Gt a⁻¹ for 2003-2023, in line with other studies.
- CryoSat-2 and ICESat-2 show excellent capabilities for providing high-resolution mass balance on regional and local scales.
- Leveraging radar and laser data allows for more robust estimation of the error budget.
- Mission of opportunity: Even given relatively crude corrections for topography Sentinel-6 still provide excellent results.
- Future improvements can help alleviate many current limitations of SAR altimetry and their use for mass balance studies.
- CryoSat-2 and ICESat-2 synergies allow for a myriad of new types of studies ranging from snow-depth to quality assessments.

Thank You!

Funding:

Geodetic Data Combination for Increased Spatial Resolution in Earth System Mass Flux Inter-mission Time Series of Land Ice Velocity and Elevation (ITS LIVE)