CLEV2ER: Development of the CRISTAL Level-2

Prototype Processors for Land Ice and Inland Water

Mal McMillan on behalf of the The CLEV2ER Consortium

Michele Scagliola, Paolo Cipollini and Jerome Bouffard

cristal

CLEV2ER: Aims & Objectives

- To design and implement the CRISTAL Level-2 thematic GPP's for Land Ice and Inland Water domains.
- > To define the content, structure and format of the associated Level-2 products.
- To perform R&D to address the outstanding scientific and technical questions relating to domainspecific Level-2 processing of data acquired by the IRIS instrument, to contribute to CRISTAL achieving SRL7 by the IOCR.

Level-2 GPP Development

Level-2 GPP Development

Level-2 GPP Processing Chains

CLEV2ER R&D Activities

Study number	Title		
1	Assessment of the divergence of Ku and Ka echoes over ice sheet surfaces.		
2	Assessment of snowpack properties on penetration depth estimates using dual band airborne altimetry.		
3	Algorithm development for the retrieval of penetration depth from dual band altimetry		
4	Assessment of the limitations and applications of combining FFSAR and swath processing.		
7	Determination of an optimal mispointing for swath processing.		
8	Improved methods for uncertainty estimation.		

Study number	Title		
1	Lake ice thickness retrieval		
2 Verification of the capability to estimate water body extent using FFSA waveforms			
3	Assessment of swath processing for water height estimation		

Inland Water

Land Ice

Study number	Title
1	Assessment of the divergence of Ku and Ka echoes over ice sheet surfaces.
2	Assessment of snowpack properties on penetration depth estimates using dual band airborne altimetry.
3	Algorithm development for the retrieval of penetration depth from dual band altimetry
4	Assessment of the limitations and applications of combining FFSAR and swath processing.
7	Determination of an optimal mispointing for swath processing.
8	Improved methods for uncertainty estimation.

Unknowns due to Ku-Ka mode of operation.

<u>_</u>	
ē	
at	
Š	
\leq	
р	
Ē	
Ĩ	
<u> </u>	

Land Ice

Study number	Title	
1	Lake ice thickness retrieval	
2	Verification of the capability to estimate water body extent using FFSAR waveforms	
3	Assessment of swath processing for water height estimation	

Study number	Title
1	Assessment of the divergence of Ku and Ka echoes over ice sheet surfaces.
2	Assessment of snowpack properties on penetration depth estimates using dual band airborne altimetry.
3	Algorithm development for the retrieval of penetration depth from dual band altimetry
4	Assessment of the limitations and applications of combining FFSAR and swath processing.
7	Determination of an optimal mispointing for swath processing.
8	Improved methods for uncertainty estimation.

Study number	Title	
1	Lake ice thickness retrieval	
2	Verification of the capability to estimate water body extent using FFSAR waveforms	Opti
3	Assessment of swath processing for water height estimation	ро

Optimising swath and potential of FFSAR.

Land Ice

Inland Water

Study number	Title		
1	Assessment of the divergence of Ku and Ka echoes over ice sheet surfaces.		
2	Assessment of snowpack properties on penetration depth estimates using dual band airborne altimetry.		Jnknowns
3	Algorithm development for the retrieval of penetration depth from dual band altimetry		
4	Assessment of the limitations and applications of combining FFSAR and swath processing.		Optimising
7	Determination of an optimal mispointing for swath processing.		potential
8	Improved methods for uncertainty estimation.	}-	mproving u
Study number	Title		
1	Lake ice thickness retrieval]-{	New par
	Varification of the capability to estimate water body extent using EESAP		

Optimising swath and

potential of FFSAR.

Verification of the capability to estimate water body extent using FFSAR waveforms

Assessment of swath processing for water height estimation

Inland Water

2

3

Land Ice

Study number	Title	
1	Assessment of the divergence of Ku and Ka echoes over ice sheet surfaces.	
2	ssessment of snowpack properties on penetration depth estimates sing dual band airborne altimetry.	
3	Algorithm development for the retrieval of penetration depth from dual band altimetry	
4	Assessment of the limitations and applications of combining FFSAR and swath processing.	
7	Determination of an optimal mispointing for swath processing.	
8	Improved methods for uncertainty estimation.	

Unknowns due to Ku-Ka mode of operation.

Preliminary results – work in progress

Land Ice

Algorithm development for the retrieval of penetration depth from dual band altimetry

Level-2

Algorithm development for the retrieval of penetration depth from dual band altimetry

Algorithm development for the retrieval of penetration depth from dual band altimetry

- ➤ Ku-Ka will allow retrieval of information relating to variability in penetration.
- However, over complex ice sheet surfaces, the difference in antenna aperture may create diverging waveforms; which will complicate the retrieval of co-located Ku and Ka measurements.

Ku band: 1.22° / Ka band:

0.51°

	Ku band	Ka band
-3 dB / 50%	~7 900 m	~3 300 m

- ➢ Aim is to use AMPLI (Aublanc et al., 2024) to assess this phenomena:
 - Adapt AMPLI from Sentinel-3 to IRIS parameters.
 - > Perform simulations along the theoretical CRISTAL orbit.
 - Assess the agreement between Ku and Ka first peaks; 4 retracking algorithms tested.

Example 1: Simple topography

➢ 0 degree across-track slope, 0.1 m roughness.

Cross Track Backscatter Distribution

1.0

0.8

0.2

Normalized power

Example 2: Complex topography

➤ 2 degree across-track slope, 10 m roughness.

Cross Track Backscatter Distribution

cross-track distance to nadir (km)

and CTBD

CTBD

- CRISTAL waveforms were simulated for one monthly sub-cycle, in Ku and Ka bands.
- Retracked range computed -> used to assess the difference in epoch between Ku and Ka, due to the topography.
- The difference in the peak position is within 2 range gates for 70-75% of the measurements for Greenland¹.
- Where surface slope > 1°, the difference in the peak position is greater than 10 gates for 35-50% of measurements².

TFMRA

- 1. 74% for TFMRA.
- 2. 48% for TFMRA.

Assessment of snowpack properties on penetration depth estimates using dual band altimetry

ESA Cryo2IceEx/SILICE spring 2022

Thanks to Ines and Andy.

H. Skourup¹, E. Merola¹, S. M. Hvidegaard¹, L. Sandberg Sørensen¹, R. M. Fredensborg Hansen, D. Gomez-Garcia Alvestegui², A. Di Bella³, I. Otosaka⁴, A. Shepherd⁴, A. Swiggs⁴, A. Braakmann-Folgmann⁴, S. George⁵, J. Li², and R. Forsberg¹

¹ DTU Space, Technical University of Denmark, Kgs. Lyngby, Denmark
² CReSIS, University of Kansas, USA
³ ESA - ESRIN, European Space Agency, Italy
⁴Centre for Polar Observation and Modelling, University of Leeds, UK
⁵University of Reading, UK

satellite

Multipeak retracking of radar altimetry waveforms over ice sheets

Qi Huang^{a,*}, Malcolm McMillan^a, Alan Muir^b, Joe Phillips^a, Thomas Slater^c

^a UK Centre for Polar Observation & Modelling, Centre of Excellence in Environmental Data Science, Lancaster University, Lancaster LA1 4YW, UK

^b University College London, Gower Street, London WC1E 6BT, UK

 $^{\rm c}$ School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Multipeak retracking of CReSIS waveforms

Ku

Multipeak retracking of CReSIS waveforms

Ka

Multipeak retracking of CReSIS waveforms

- Run the multipeak retracker for up to 3 peaks in Ku and Ka.
- Calibrate relative to Airborne Laser Scanner.
- > Assess depths of dominant scattering layers within the snowpack.

Summary & Outlook

CLEV2ER kicked off last summer and has been running for ~ 1 year.

Principle aims are:

To define and implement the Land Ice and Inland Water Level 2 GPP's.

To perform R&D activities to address outstanding questions relating to CRISTAL's operations.

> To contribute to the demonstration of the Scientific Readiness of the mission.

➢ Q1 2025: Phase 1 of the GPP completed.

Summer 2026: Project will complete with version 2 of the GPP released.

Supplementary

Case study 5: high values of both slope and roughness

cross-track slope = 2.02° // cross-track roughness = 10.41m

27

CLEV2ER: Aims & Objectives

The main technical objectives of the *CLEV2ER* study are defined as follows:

- > Define the first version of the CRISTAL Level-2 product format and content over Land Ice and Inland Water domains.
- > To implement fully traceable uncertainty parameters within both GPP's.
- > To implement current state of the art Level-2 processing algorithms, within an agile and responsive GPP framework.
- To perform dedicated R&D to address major outstanding issues in IRIS Level-2 processing over Land Ice and Inland Water; thus contributing to raising the CRISTAL mission's SRL to 7 at the IOCR.
- ➤ To perform critical analysis, with a view to informing the further development of the CRISTAL L2 operational processor in the future.