

Estimating landfill methane emissions in Indian megacities with Sentinel 5p TROPOMI

Harjinder Sembhi¹, Hartmut Boesch^{1,2}, Cristina Ruiz Villena^{1,2}, Rocio Barrio Guillo^{1,2}, <u>Tim Trent^{1,2}</u>, Ravi Kumar Kunchula³, Sagnik Dey³, Swarnendu Pal³, and Oliver Schneising⁴

1. School of Physics & Astronomy, University of Leicester, UK

2. National Centre for Earth Observation, UK

Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, India
Institute of Environmental Physics, University of Bremen, Bremen, Germany

mage Credit: Associated Press

S5p Anniversary 13th Oct 2022

Motivation

Point Source Detection

Satellite sensors -> potential to map CH_{4} emissions from point GHGSat-D Satellite Observation CH₄ February 15th, 2020 Essential requirements to detect and quantify point source emission estimates: Local meteorological conditions for the consideration of the vertical and horizontal dispersion of the plume ht A realistic representation of the background CH₄ concentrations br to infer enhancements Va Accurate isolation of "plume" pixels to define the full extent of the enhanced features

Integrated mass enhancement [Varon et al. 2018, 2019, Cusworth et al. 2021]

hs32@le.ac.uk

1880 1920 1960 2000 2040 2080 Methane (ppb)

Methodology

Landfills in Indian Megacities

S5p Anniversary 13th Oct 2022

Example: CH₄ over Delhi (Ghazipur)

S5p Anniversary 13th Oct 2022

Wind-rotated CH₄ enhancements

Delhi

Hyderabad

Mumbai

- Rotated, stacked & averaged TROPOMI orbits from 2018/01 to 2020/06
- Largescale features -> cumulative enhancements from many different sources -> could be difficult to disentangle signals only landfill emissions

Calculated CH₄ Emissions

- TROPOMI orbits analysed from 2018/01 2020/06
- Q (source rate in kg/hr) are calculated for individual scenes
- Distribution of the emissions calculated are shown in the histogram

Some anomalously high emission rates calculated –outliers to be discarded

1σ uncertainties in the range of 65 % Wind speed estimation

Anthropogenic emission contributions

*CAMS anthropogenic methane emissions [kg/hr] – gives an idea of different emission source contributions.

S5p Anniversary 13th Oct 2022

Landfill Site/City/State	Number of S5p Orbits	TROPOMI Mean Emission Rate, 1σ & range [Gg/yr]	LandGEM-based modelling studies CH ₄ Emissions [Gg/yr] (landfill only)	Kolsepatil et al. 2019 State-level CH ₄ Emission [Gg/yr] (w.r.t 2015)	Tropomi-based WRF inversion with EDGAR from Maasakkers et al. 2021 [Gg/yr] (w.r.t 2020)
Deonar/Mumbai	140	235.66 ± 241 (2.5 – 1552)	-	65.506	245 (35% contribution from landfill)
Ghazipur/Delhi	124	202.40 ± 140 (14 – 879)	12 – 29 [2015: Ghosh et al. 2019] 15 – 29 [2019: Srivastava & Chakma, 2020] 15 [2020: Kumar & Sharma, 2014]	33.936	525 (5% contribution from landfill)
Dhapa/Kolkata	11	109.49 ± 61 (52 – 244)	15 [2019: Chattopadhyay et. al. 2018]	50.317	-
Tajpur Road/Ludhiana	35	89.30 ± 69 (22 – 350)	-	19.93	-
Jawarahnagar/Hyderaba d	37	58.29 ± 35 (24 to 183)	-	4.0	-

S5p Anniversary 13th Oct 2022

Summary

- S5p TROPOMI data (2018 2020) captures enhanced CH₄ features (20 70 ppb) over landfill locations in 5 Indian cities
- Emission estimates are larger than those observed in literature
 - Difficulties in disentangling individual landfills from other sources on a city scale (TROPOMI pixels~ 5.5 x7 km²)
 - Integrated signal more likely captures accumulated CH₄ over time from a multitude of sources over megacities including landfills contributions

The way forward

- Bringing in complementary sensors like high resolution imagers like GHGsat provides means to pin-point landfill emission and add detail to TROPOMI emission estimates
- Thanks to ESA third party programme, GHGsat has provided targeted observations for each landfill site in 2021/2022
- Future efforts will be towards making in situ/ground measurements in these locations to get a sense of the spatial heterogeneity and temporal variability of emissions and separate landfill signatures from the wider city contributions
 - Steps towards corrective measures to manage and regulate landfill emissions

Thank you for your attention.

S5p Anniversary 13th Oct 2022