

ESA UNCLASSIFIED – For ESA Officia

PROGRAMME OF THE EUROPEAN UNION

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Comparison of SLSTR Clear-Sky Infrared Measurements with those of Geo-stationary Imagers, and skin SST Accuracy Assessment Using Ship Radiometers Peter J. Minnett and Bingkun Luo * *Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA* * Now at Harvard Smithsonian Astrophysical Observatory, Harvard University, Cambridge, MA, USA

Sequence of Presentation

- Motivation
- Data: SLSTR on Sentinel 3a, ABI on GOES-16, SEVIRI on MSG-4

PROGRAMME OF THE

EUMETSAT

opernicus

- Procedure
 - Brightness temperature harmonization
 - Test cases
 - Assess accuracies
- Validation of derived SST_{skin} using M-AERIs
- Conclusions

· e esa

Motivation

- The generation of multi-decadal Climate Data Records of SST requires the combination of measurements from several sensors on different satellites.
- The successful combination requires knowledge of the accuracies and consistency of the on-orbit measurements and of the derived skin SSTs.

PROGRAMME OF THE

EUMETSAT

opernicus

 We present results of a comparison of the brightness temperatures (BTs) measured by the Sentinel-3a SLSTR and those by the Geostationary Operational Environmental Satellite (GOES-16) Advanced Baseline Imagers (ABI) and Meteosat Second Generation (MSG-4) Spinning Enhanced Visible and Infrared Imager (SEVIRI).

·eesa

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

EUMETSAT

Radiometer Sampling Characteristics.

Satellite radiometer	Source	Temporal resolution	Nadir Spatial resolution
Sentinel-3A SLSTR	EUMETSAT Copernicus Online Data Access (CODA)	3 minutes for L-1B data	1 km
GOES - ABI	NOAA Amazon Web Services (AWS) Data Centre	10 minutes	2 km
MSG-4 SEVIRI	EUMETSAT Data Centre	15 minutes	3 km

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

opernicus

•

Infrared Bands for SST_{skin}

Band	Band	Center Wavelength (µm)	Band	Center Wavelength (µm)	Band	Center Wavelength (µm)
	C	GOES - ABI	MS	G-4 SEVIRI	Sentin	el-3A SLSTR
IR038	7	3.90	4	3.90	S7	3.74
IR087	11	8.50	7	8.70	-	-
IR112	14	11.20	9	10.80	S8	10.95
IR123	15	12.30	10	12.00	S9	12.00

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Radiometer Relative Spectral Response Functions. 0.9 0.8 Atmospheric Transmission Gap 0.7 Navelength 0.6 0.5 0.4 0.3 SLSTR ABI 0.1 SEVIR 0 10 11 12 13 8 9 3 4 Wavelength (µm)

PROGRAMME OF THE EUROPEAN UNION

6

· e e sa

co-funded with

EUMETSAT

•

opernicus

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION opernicus 🕑 EUMETSAT

SLSTR L1-B data used in this study

Areas	Compari- sons	Date	UTC Time	Geosta
1 Eastern tropical North Atlantic Ocean	SLSTR with ABI	Jan 01, 2020	Day: 15:21:14 Night: 02:55:20	70°N 40°N
2 Mediterran- ean Sea	SLSTR with SEVIRI	Dec 23, 2019	Day: 09:04:56 Night: 20:21:51	10°N 20°S -
3 Cross- covered region	SLSTR with SEVIRI and ABI	Nov 27, 2019	Day: 12:09:44 Night: 00:36:20	50°S 80°S 145°W

Seostationary satellite coverages. Background: May 2020 SST

- Select SLSTR granules in mostly cloud-free areas, but some cloud is desirable.
- For each SLSTR pixel find ABI and SEVIRI pixel within 1 km, and usually < 5 minutes
- Use Radiative Transfer modelling (RTTOV) to simulate top-of-atmosphere brightness temperatures (TOA BTs) in all bands.

PROGRAMME OF THE EUROPEAN UNION

- Sea surface and vertical atmospheric data for TOA BT simulations from NASA Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
- Convert BTs of ABI and SEVIRI into equivalent SLSTR brightness temperatures:

$$BT_{\text{SLSTR equivalent}} = a \times BT_{ABI \text{ or } SEVIRI} + b \times BT_{SLSTR} \times (\sec(\theta_{SLSTR}) - 1) + c \times BT_{ABI \text{ or } SEVIRI} \times (\sec(\theta_{ABI \text{ or } SEVIRI}) - 1) + d$$

Coefficients are scene dependent

(·eesa

co-funded with

EUMETSAT

opernicus

PROGRAMME OF THE EUROPEAN UNION

EUMETSAT

opernicus

9

· e esa

Area 1. SLSTR daytime IR image on Jan 01, 2020, 15:21:14 UTC

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Area 1. SLSTR nighttime IR image on Jan 01, 2020, 02:55:20 UTC.

PROGRAMME OF THE

EUROPEAN UNION

EUMETSAT

opernicus

11

· e esa

Area 1. SLSTR nighttime IR image on Jan 01, 2020, 02:55:20 UTC.

12

· e e sa

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

opernicus

CEUMETSAT CO-funded with

Area 1. SLSTR vs ABI BTs.

Eastern Tropical North Atlantic Ocean	Day/ night	Band (SLSTR)	Mean (K)	STD (K)	RSD (K)
SLSTR vs ABI	Day Night	S7 - 3.74 μm	0.028	0.296	0.248
		S8 - 10.95 μm	0.054	0.326	0.145
		S9 - 12.00 µm	0.042	0.401	0.260
		S7 - 3.74 μm	0.039	0.360	0.281
		S8 - 10.95 μm	0.079	0.383	0.230
		S9 - 12.00 µm	-0.035	0.360	0.330

. _ || ▶ :: ━ + || ■ 三 || || = = : = !! ▶ || = !! = !! || = !! || = !!

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

opernicus

CO-funded with

Area 2. SLSTR vs SEVERI BTs.

Mediter- ranean Sea	Day/ night	Band (SLSTR)	Mean (K)	STD (K)	RSD (K)
		S7 - 3.74 μm	0.133	0.544	0.493
	R Day	S8 - 10.95 µm	0.067	0.454	0.143
SLSTR		S9 - 12.00 µm	0.073	0.440	0.198
VS		S7 - 3.74 µm	0.077	0.480	0.320
SEVIRI	Night	S8 - 10.95 µm	0.143	0.674	0.240
		S9 - 12.00 µm	0.124	0.644	0.328

| = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ = = = ■ ■ ■ ■ = = = ■

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Area 3. SLSTR vs ABI and SEVIRI BTs

Equatorial Atlantic Ocean	Day/ night	Band (SLSTR)	Mean (K)	STD (K)	RSD (K)
SLSTR	Dav	S8 - 10.95 µm	0.035	0.452	0.184
VS	Day	S9 - 12.00 µm	0.056	0.516	0.211
ABI	Niaht	S8 - 10.95 μm	0.128	0.891	0.186
	i tigitt	S9 - 12.00 µm	0.143	1.084	0.207
SLSTR	Dav	S8 - 10.95 μm	0.087	0.450	0.202
VS	Day	S9 - 12.00 µm	0.072	0.467	0.241
SEVIRI	Niaht	S8 - 10.95 μm	0.084	0.465	0.224
	- ign	S9 - 12.00 µm	0.105	0.549	0.265

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

5°N-w

85°W

80°W

75°W

70°W

65°W

opernicus

EUMETSAT

- Matchups within 60 minutes and 10 km.
- Best retrievals from the four possible algorithms used.
- SSESs not applied.
- 5216 Matchups.

60°W

55°W

16

·eesa

co-funded with

60°W

5°N 90°W

75°W

PROGRAMME OF THE

EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Sentinel-3a SLSTR - M-AERI SST_{skin}

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Sentinel-3a SLSTR - M-AERI SST_{skin}

Cruises	START	END	Ν	Mean	Med	STD	RMS	RSD
2017 Equinox	20170701	20171231	929	-0.274	-0.059	0.742	0.790	0.473
2017 Allure	20171002	20171126	205	-0.179	-0.023	0.780	0.799	0.313
2018 Equinox	20180111	20180415	532	-0.200	-0.106	0.691	0.719	0.326
2018 Adventure, Leg 1	20180212	20180527	451	-0.116	-0.029	0.529	0.541	0.291
2018 Adventure, Leg2	20180601	20181231	1344	0.038	0.033	0.385	0.386	0.242
2018 RHB	20180307	20181023	921	-0.001	0.044	0.415	0.415	0.275
2019 RHB	20190224	20190329	394	-0.143	-0.050	0.471	0.492	0.326
Total	20170701	20190329	5216	-0.098	-0.008	0.565	0.574	0.296

PROGRAMME OF THE EUROPEAN UNION

__ II 🛌 :: 🖛 + II 🗮 🚝 __ II II = __ :: II 🖬 💻 🚺 II __ :: II 💥 📰 🛏 IV

18

· e e sa

co-funded with

EUMETSAT

opernicus

Validation of GOES-16 ABI SST_{skin} with M-AERI

- Matchups within 30 minutes and 5 km.
- ACSPO SST_{skin} retrievals.
- With and without SSESs.
- 44448 Matchups.

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

GOES-16 ABI - M-AERI SST_{skin}

PROGRAMME OF THE EUROPEAN UNION

20

· e esa

co-funded with

EUMETSAT

*

opernicus

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

GOES-16 ABI - M-AERI SST_{skin}

SSTskin difference with Local time ABI minus M-AERI SSTskin 0 15 20 24 0 5 10 Local time [hour] **Daytime SSTskin retrieval Difference** Nighttime SSTskin retrieval Difference 800 2500 N:4396 N:12138 700 Mean:0.156K Mean:0.125K 2000 STD:0.467K STD:0.390K 600 RSD:0.242K RSD:0.286K Number 200 Number 1000 1000 300 200 500 100 0 0 -2 -1 -2 -1 2 0 0 ABI minus MAERI SSTskin Difference ABI minus MAERI SSTskin Difference

PROGRAMME OF THE

EUROPEAN UNION

opernicus

logarithmic 10 scale of the density

EUMETSAT

STATES AND A STATES

21

·eesa

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

GOES-16 ABI - M-AERI SST_{skin}

CRUISES	Ν	MEAN	MED	STD	RMS	RSD
2018 Equinox	10869	0.036	0.035	0.302	0.304	0.19
2018 Allure	8948	0.035	0.031	0.231	0.233	0.20
2018 Adventure	11840	0.171	0.136	0.394	0.430	0.24
2019 Adventure	10081	0.089	0.081	0.420	0.430	0.26
2018 RHB	1188	0.060	0.069	0.234	0.242	0.19
2019 RHB PNE	1003	0.069	0.101	0.291	0.299	0.16
2019 RHB UNOLS	519	0.174	0.259	0.744	0.764	0.49
Total	44448	0.086	0.072	0.356	0.367	0.22

SLSTR	5216	-0.098	-0.008	0.565	0.574	0.296
						1

Conclusions

- This study demonstrates the feasibility of combining BTs from SLSTR with those of ABI and SEVIRI.
- Generation of SLSTR effective BTs from radiometers on geostationary satellites requires scene dependent coefficients.

PROGRAMME OF THE EUROPEAN UNION EUMETSAT

opernicus

- Test cases indicate SLSTR BTs compare better with those of ABI than those of SEVIRI.
- Conversion equations applicable to larger areas with greater atmospheric variability will likely require extra terms, possibly including additional variables, such as water vapor amount, aerosols...
- Larger discrepancies in the BTs from different sensors are related to cloud edges.
- Basic statistics of SST_{skin} retrievals from SLSTR and ABI are comparable when compared to M-AERI data, with SLSTR having a smaller Median but larger Robust Standard Deviation.

23

•eesa

Further details

- Luo, B., & Minnett, P.J. (2020). Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers. *Remote Sensing 12*, 3279. doi:10.3390/rs12203279
- Luo, B., Minnett, P.J., Szczodrak, M., Kilpatrick, K., & Izaguirre, M. (2020). Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. *Remote Sensing* of Environment 244, 111826. doi:10.1016/j.rse.2020.111826

PROGRAMME OF THE EUROPEAN UNION

opernicus

 Luo, B., & Minnett, P.J. (2021). Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne M-AERI. *IEEE Transactions on Geoscience and Remote Sensing 59*, 9902-9913. doi: 10.1109/TGRS.2021.3054895

24

CO-funded with

Acknowledgements

- NASA Physical Oceanography Program.
- NASA Participating Investigators Program.
- NASA Senior Review Support.
- NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) Program Bingkun Luo.

PROGRAMME OF THE EUROPEAN UNION

- Royal Caribbean Group.
- Officers and crew of the NOAA Ship Ronald H. Brown.

Thank you for your attention

EUMETSAT

opernicus

25

· eesa