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The Open Big Earth Data
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Zhu et al., On the Foundations of Earth and 
Climate Foundation Models, under review.
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Explorative Signal Processing Methods

Date Fusion

Information Mining

Machine Learning/Deep Learning

Big Data Management and HPC

AI and Data Science in Earth Observation



What can ML4Earth offer?  

A few motivating examples of tackling societal grand 
challenges
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Urban Growth Happens Mostly in Developing Areas 
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Open Data for Urban Research? 

> 4.1 Billion buildings in the world (UN, 2019)

604 Million building footprints in OSM < 15% 

Only 3% buildings in OSM have height information < 0.5 %

Status: April 16, 2024
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Building Footprint Extraction from NewSpace-Satellite Images

A Graph Convolutional Recurrent Neural Network trained with

satellite image and GIS building footprint pairs from 74 cities
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A: Data acquisition
1. Urban detection
2. Image querying

B: Analysis-ready data
3. Radiometric calibration
4. Mosaicing

C: Machine learning pipeline
5. Training data preparation
6. Machine learning methods
7. Model training

D: Inferencing
8. Parallel processing
9. Model averaging

E: Post-processing
10. Editing/ Filtering
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Sensor: Planet Doves

# of images: 779072 

# of 0.2 degree tiles: 45065

Data Overview



Global Buildings 

Red: Google Green: Global OpenBuildingMap(ours) Blue: OpenStreetMap 
Zhu et al., under review
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Two examples

• Marrakech, Morocco

• Cairo, Egypt
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Cairo, Egypt
OSM vs. Ours
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Marrakech, Morroco
OSM vs. So2Sat
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0
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Solar Potential Analysis of Global Buildings

If we place solar panel on the roof of all buildings, it is possible to supply 1.1 to 3.3 
times of the global energy consumption of 2020! Zhu et al., under review



GBM - 189 cities, > 242 k patches

Imagery ©2023 NASA, TerraMetrics, Map data  ©2023 Google, INEGI

Global 3D Building Modeling from Single Remote Sensing Images
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– Ill-posed problem
– Use of ViTs for enforcement of global consistency
– Classification-regression paradigm
– Distribution-based method

– Long-tailed distribution of the height values
– Head-Tail Cut (HTC) for distinct treatment of 

background and foreground

– Unconstraint distributions lead to large errors
– Distribution-based constraints (DC) as 

regularization

Classification

prediction of bin edges and probabilities

Regression

Smoothing of 

classification outputs

HTC-DC Net: Monocular Height Estimation from Single Remote Sensing Images 

Chen et al., TGRS, 2023
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City Center, Vancouver, Canada

Test Building Height Accuracy of 3.8m on 21 cities across the globe
Global inference will be finished by the mid of May!
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photo credit: shutterstock
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Monitoring the Antarctic Coastline

Sentinel 1 GRD @ 40m

Jun 2017 – Dec 2018

Dense Annotations: Land / Water

~ 510,000 km² Training

~ 220,000 km² Validation

Heidler et al., TGRS, 2021
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HED-UNet: Combined Segmentation and Edge Detection for Monitoring the 
Antarctic Coastline

– coastline detection as a dual inference task. 

– predictions at multiple resolutions

– a hierarchical attention mechanism

Heidler et al., TGRS, 2021
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Results – Qualitative

Input Ground Truth UNet4 UNet6 HED-UNet6

Heidler et al., TGRS, 2021
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A High-Resolution Calving Front Data Product for Marine-Terminating Glaciers in 
Svalbard

Features:

– 149  marine-terminating glaciers in Svalbard

– 124919 glacier calving front positions during 
the period of 1985-2023 

Li et al., ESSD 2024
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Calving Front Change Rate & Spatial distribution of different glacier types 

Li et al., ESSD 2024
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Ocean Temperatures are a much stronger 
driver than air temperatures

Previously unquantified seasonality

Li et al., in review

Correlating with Environmental Factors
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What are the open challenges in ML4Earth?
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Open Issues in AI4EO

Re-implant physics, Bayes 
and domain expertise

Reasoning Transferability Uncertainty 

Explainability EthicsQuantum Machine Learning

Image Sources:
D-Wave Systems, Inc., wikimedia common

Trent Kuhn, Creative Commons

Uncertainty 

EthicsGreen AI

https://thenounproject.com/strppngynglad
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Inputs:

Coordinates X, Y;

Time domain T;

Initial conditions (h0);

Terrain (DEM);

Rainfall;

Boundary conditions 

(Building);

Outputs:

water height H;

X-direction velocity of 

the water U;

Y-direction velocity of 

the water V;

Berlin I

Berlin II

Predicted 

Variables

MAE (Absolute 

error, water 

pixels)

MAPE (Relative 

error, water pixels)

Water Heights 

(H)
0.0065 (m) 0.2202 (22.02%)

X-direction 

velocity (U)
0.0011 (m/s) 0.3182 (31.82%)

Y-direction 

velocity (V)
0.0011 (m/s) 0.2838 (28.38%)

Flood Forecast on Berlin I (2 hours)

Predicted Variables
MAE (Absolute error, 

water pixels)

Water Heights (H) 0.008 (m)

X-direction velocity (U) 0.014 (m/s)

Y-direction velocity (V) 0.016 (m/s)

Transferability analysis of different Berlin regions (Berlin II)

Study Regions

Adaptive Fourier Neural 

Operator Network (PDgML)

Physical Data-guided Machine Learning (PDgML) for Urban Flood Modeling and 
Forecast
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Flood depth validation over a 14-day period 
(flood simulation from August 18th to August 30th, 2022)

PiML-based flood forecast achieves an average MAPE of 14.93% for 14-
day flood depth predictions. (Pakistan flood prediction in 2022)

Geometry-adaptive physics-informed neural solver (PiML)

Physics-informed Machine Learning (PiML) for Large-scale Flood Modeling and 
Forecast
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Rainfall-runoff Modeling and Forecast

Rainfall-runoff-inundation Modeling 
and Forecast

Rainfall-Induced Landslide Modeling 
and Forecast

Flood Modeling and Forecast

Process-based Hydrology in Physics-aware Machine Learning (HydroPML)

Xu et al., 2024
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find all buildings with yards

Human-centered AI analytics of EO data

Yuan et al., TGRS, 2024
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find all buildings with yards

Human-centered AI analytics of EO data

Yuan et al., TGRS, 2024
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ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language 
Geo-Foundation Models
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Gawlikowski et al, 2023

Uncertainty Quantification
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How Certain are the Uncertainty Estimates? 

Wang et al., GRSM, under review
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Can Human Uncertainty Improve Model Performance in Earth Observation?

Koller et al, 2023
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Ethics in AI4EO



Hey, how about Foundation Models?
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What is a foundation model (FM)?

A model that:

– is trained on broad data (generally using self-supervision), and 

– can be adapted to a wide range of downstream tasks.

Bommasani, Rishi, et al. "On the opportunities 
and risks of foundation models." arXiv (2021). Zhu et al., On the Foundations of Earth and 

Climate Foundation Models, under review.

Link to paper:
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The potential of Earth and climate FMs

– Unlocking the value of big EO and climate data

– Enhancing label efficiency

– Reducing carbon footprints

– Bridging EO and climate science

– Improving Earth system modeling

Zhu et al., On the Foundations of Earth and 
Climate Foundation Models, under review.
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The ideal Earth and climate FM

Must have features:
1. Geolocation embedding
2. Balanced geographical representations
3. Scale awareness
4. Wavelength embedding
5. The time variable
6. Multisensory
7. Task-agnostic
8. Carbon minimized

Highly desirable features:
9. Uncertainty quantification
10. Physical consistency
11. AI assistants

Zhu et al., On the Foundations of Earth and 
Climate Foundation Models, under review.
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DOFA: Neural Plasticity-Inspired Foundation Model for Observing the Earth Crossing 
Modalities

– Integrate various data modalities into a single framework adaptively

– Excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining

Xiong et al., 2024
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SOTA FMs and gaps

– Most models focus on only one or two of “must-have” features

– Big potential but gaps exist in connecting EO and climate FMs

Zhu et al., On the Foundations of Earth and 
Climate Foundation Models, under review.
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The way forward

a) Comprehensive data source

b) Metadata integration

c) Dynamic encoder

d) Spatial-temporal modeling

e) Multimodal learning

f) Geographical mixture of experts

g) Continual pre-training

h) Uncertainty quantification

i) Physical consistency

Zhu et al., On the Foundations of Earth and 
Climate Foundation Models, under review.



What comes after the Foundation Models?



In collaboration with

ML4Earth Foundation Model Workshop

Where: Kolpinghaus in Munich

When: September 18, 2024

Contact: ai4eo@tum.de



In collaboration with

ML4Earth Foundation Model Hackathon

Where: Technical University of Munich

When: September 19 - 23, 2024

Contact: ai4eo@tum.de



53

AI4EO Symposium 2024

Where?

TUM Campus Ottobrunn

Lise-Meitner-Straße 9, 85521 Ottobrunn

When?

July 15-16, 2024

Free registration at:



A Few Statements

– Big Earth data and AI4EO offer invaluable geo-information helping tackling societal
grand challenges

– Towards large scale and actionable geoinformation retrieval and prediction, 
fundemental methodological challengues must be addressed, such as uncertainty, 
physical-consistency, explainability, transferrability etc.

– Earth and climate foundation models have enormous potential, but we are just 
scratching the surface ...

Contact: xiaoxiang.zhu@tum.de                               @xiaoxiang_zhu

mailto:xiaoxiang.zhu@tum.de
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