

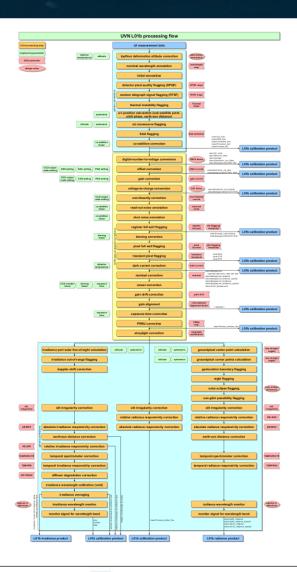
Calibration features in the TROPOMI LO-1b data processor

Nico Rozemeijer^{1,2}, Antje Ludewig¹, Erwin Loots¹, Emiel van der Plas¹, Jonatan Leloux^{1,2}, Tim van Kempen³, Richard van Hees³, Mirna van Hoek¹, Simon Spronk^{1,2} and Pepijn Veefkind¹

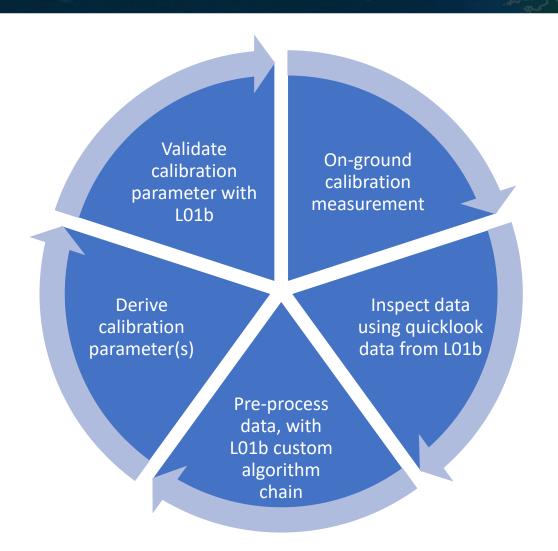
¹KNMI (Royal Netherlands Meteorological Institute), Utrechtseweg 297, 3731 GA De Bilt, Netherlands

²TriOpSys B.V., Computerweg 5, 3542 DP Utrecht, The Netherlands

³SRON Netherlands Institute for Space Research, Niels Bohrweg 4, 2333 CA Leiden

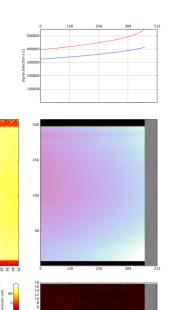

Calibration data vs. the L01b

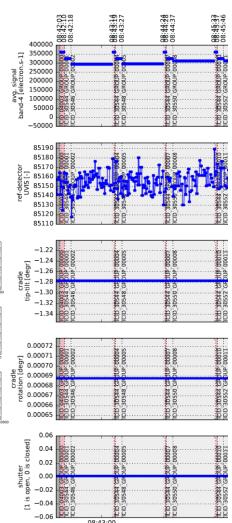
- Many of the algorithms in the L0-1b use calibration key data (CKD) as input
- Quality of the calibration key data has direct impact on the quality of the L1b data
- Quality needs to be maintained throughout the mission, on-ground as well as in-flight
- Consistency between L01b and CKD crucial
- Calibration has been taken into account in the development of the L01b from the start

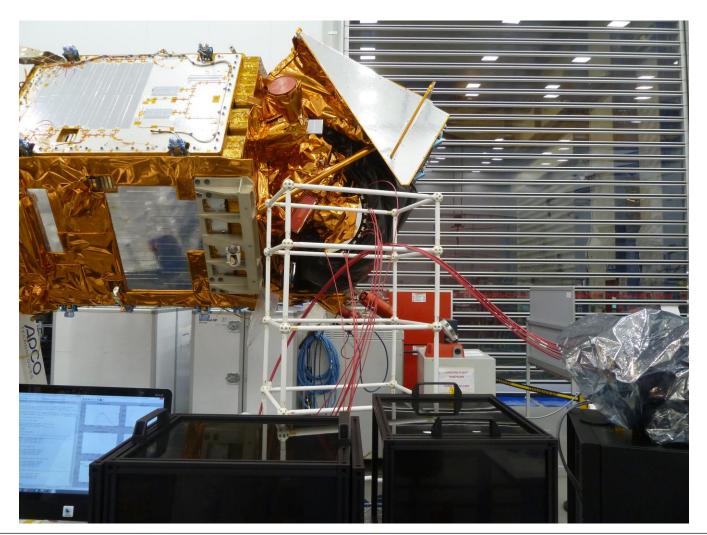


L01b features:

- Generating quick-look output (NRT)
- Custom data processing
- Processing up-to specific (intermediate) processing level
- Processing of OGSE / MGSE / EGSE data
- Closed loop validation






NIR-OOB-SL: Flexibility needed

L01b features:

- Dedicated processing setup, for measurements in ambient
- Custom data processing
- Processing up-to specific (intermediate) processing level
- Generating quick-look output (NRT)
- Processing of OGSE / MGSE / EGSE data



- In-orbit calibration
- Data reduction
- Quick look generation
- Trending / monitoring data generation

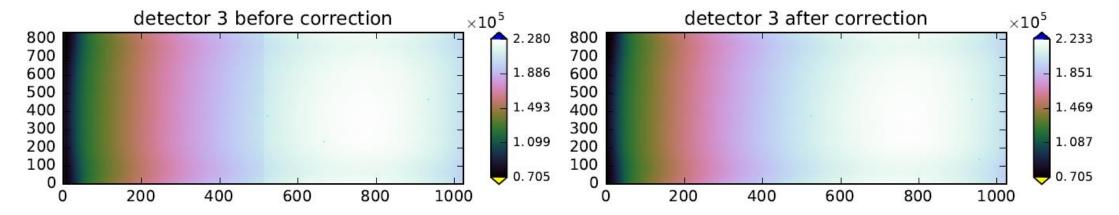
ICAL processor

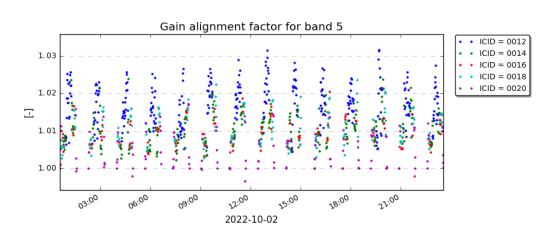
- Multi-orbit (calibration) analysis
- Dynamic Calibration Key Data generation
- Additional trending / monitoring data generation

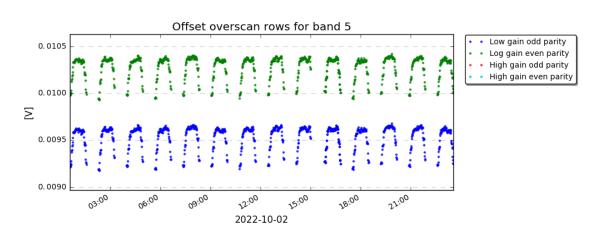
IDAF

- Trending / monitoring / calibration database for entire mission
- Complex calibration algorithms
- Off-line analysis
- Website / Visualisation
- Auxiliary Calibration Key Data updates

Calibration key data updates







Dynamic in-orbit calibration of UVN offset and UVN gain alignment

In-flight calibration chain

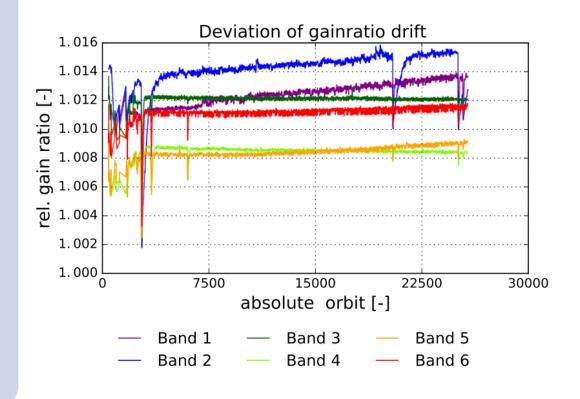
Derivation of calibration key data for UVN detectors gain drift

L01b processor

Dedicated processing level

Data reduction (averaging)

ICAL processor


Combination of different gain measurements

Derivation of gain factor and gain drift for single orbit

IDAF

Off-line analysis to derive trend and CKD over the entire mission

Off-line report,
QA check, and
testing and
integration with
L01b processor

In-flight calibration reporting

PROGRAMME OF THE EUROPEAN UNION

co-funded wit

sentinel-sp

TROPOMI operations & instrument weekly report

TROPON

Report W.2022.38

This weekly report covers the KNMI operation support facility (OSF) status as well as the TROPOMI instrument and L1b status for calendar week 38 of the year 2022. The series includes data from orbits 25561 to 25659. Only the status covering this time period is presented, for long term trending of the instrument status see the monthly reports. The purpose of these reports is to give a concise overview of the operational status and physical health of the payload. In case of anomalies or deviations issues will be raised by the responsible ESL or OSF through the defined procedures. More information on the status of TROPOMI and the monthly reports can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu. Additional analysis for SWIR only can be found at http://mps.tropomi.eu.

Summary

The summary of this reporting period is given below. **Reporting period:** 2022-09-19 to 2022-09-25 **Orbit range:** 25561 to 25659

Parameter	Status			
Nominal operations baseline	nominal			
FDIR fault management	none			
IDAF data processing status	normal			
Detector thermal status	nominal			
Payload thermal status	deviating			
L1b pixel statistics	as expected			

A table of contents of this report can be found here.

Life limited items usage

The life limited items usage is given for the current reporting period. The budget for each item can be found in the monthly reports. When the usage values exceed reasonable limits based on experience with historic weekly reports, these are indicated in orange.

Life limited item	Usage	Unit		
Folding mirror mechanism	47.0	cycles		
Diffuser mechanism	79.0	cycles		
White light source	0:03:54	hours		
Common spectrometer LED	0:55:50	hours		
Detector LEDs	5:29:46	hours		
Spectral line sources total	0:11:15	hours		

IDAF data processing status

The number of files ingested by the IDAF system at KNMI are shown below. The expected number of files is predicted by OSF based on the nominal operations baseline. Five types of files are ingested: the instrument engineering data files (ENG), the inflight calibration files for the UVN (ICM_UVN) and SWIR (ICM_SIR) module, the orbital event files (OEF) and the two-line-element ephemeris files (TLE). Numbers in orange have a small deviation from the expected baseline, while numbers in red deviate by more than 2%.

File type	Expected number	Processed number		
ENG	99	99		
ICM_UVN	99	99		
ICM_SIR	99	99		
OEF	7	7		
TLE	7	7		

Executed orbit types

The orbit types that were executed during this week are listed below. When deviations from nominal operational baseline occur, the expected orbit type is coloured. Unexpected orbit types and orbits for which data is present but the orbit type cannot be determined are shown in orange. Missing orbits are shown in red. Note that a calendar day can have either 14 or 15 orbits.

Start time UTC	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2022-09-19 01:00:12	01	DZ	W11	01	01	D3	01	01	01	D4	01	01	D1	W6	
2022-09-20 00:41:04	01	01	DZ	W12	F3	01	D3	01	F4	01	D4	01	01	D1	
2022-09-21 00:21:55	W1	01	01	DZ	W7	01	01	D3	W13	01	01	D4	МЗ	01	
2022-09-22 00:02:46	D1	W2	01	01	DZ	WB	01	01	D3	W14	F7	01	D4	01	01
2022-09-23 01:25:07	D1	W3	01	01	DZ	W9	01	01	D3	W15	01	01	D4	01	
2022-09-24 01:05:58	01	D1	W4	01	01	DZ	W10	01	01	D3	W16	01	01	D4	
2022-09-25 00:46:50	M4	01	D1	W5	01	01	D2	W11	01	01	D3	01	01	01	

On-board fault management

There are instrument housekeeping parameters that are monitored by on-board fault management. A red limit violations triggers an FDIR and the instrument will go into safe mode and no further measurements are executed. For red limit violations the parameter, the UTC start and stop time of the occurrence is given below. In case of a yellow limit violation a warning is sent to FOS, but the measurements continue. Yellow limit violations can occur multiple times, the total number of events is given in the table. The table also lists if it is an upper (U) or lower (L) limit violation. If no violations have occurred during the reporting period, the table is empty.

	Red lin	nit violations	Yellow limit violations			
Parameter	Start time	Stop time	U/L	# of events	U/L	
	100	no violatio	ne.			

IDAF Daily and weekly reports summarize the main instrument performance and calibration parameters and are the basis for further analysis

- Integration of calibration functionality, the use of the LO1b processor during on-ground and inflight calibration, and great teamwork have resulted in high quality Level 1B data products from day 1 of the mission
- Continuous monitoring, trending and data analysis have allowed to further improve Level 1B data quality, and to correct for temporal variations in instrument performance / behaviour.
- The ongoing calibration activities by the dedicated L1B and calibration team will ensure high quality data for hopefully many years of mission still to come.

Post-launch event 13 October 2017

