Super-Resolution of GOME-2 Nitrogen Dioxide (NO₂) data using Sentinel-5P for training.

Deep Learning for Atmopsheric Composition

Riccardo Ratta₁

Maximilien Houël₂, Simone Mantovani₂, Federico Fierli₃, Sebastiano Fabio Schifano₁

```
SUREDOS24 - 29-31 May 2024 - ESRIN, Frascati
```

Università degli Studi di Ferrara₁ Meteorological and Environmental Earth Observation₂ European Organisation for the Exploitation of Meteorological Satellites₃

GOME-2

- Launched in 2006, 2012, 2018 on board of MetOp A/B/C
- Resolution at the equator of 40x80 km²

TROPOMI

- Launched in 2017 on board of Sentinel-5P
- $\cdot\,$ Resolution at the equator of 3.5x7 $\rm km^2$

Settings (2)

- Dataset of 1 year (2023)
- \cdot 30-70 random split for training and test
- Patches extracted from 10 polluted locations
- 2nd experiment include SRTM digital elevation data

Model

Residual Dense Super Resolution Zero Loss (RDSRZL)

Model

RDSRZL

Residual Dense Block (RDB)

Residual in Residual Dense Network

Missing pixels

Cloud cover averages around 67% globally

To operate with incomplete patches we modified the L_1 loss (MAE) function,

$$L'_1(y, \hat{y}) = \frac{1}{M} \sum_{i=1}^N y'_i.$$

Where,

$$y_i' = \begin{cases} |y_i - \hat{y}_i| & \text{if } m_i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Where $m_i \in \{0, 1\}$, called *invalidity mask*, and $\sum_{i=0}^{N} m_i = M$.

RDSRZL

Training

Validation Loss

Model	Epochs	<i>L</i> ₁ ' (molec cm ² 10 ⁵)
Bicubic interp.	-	5.215
RDSRZL	500	3.820
RDSRZL with Elevation	500	3.701

Where the L'_1 loss has been evalauted on the test set (254 days random sampled from year 2023) and averaged over the 10 selected locations.

Let's look at some images

Results (1) - With & Without Elevation

2023-08-04 Elevation

Results (2) - Tehran

4

0

2023-10-14

Results (3) - Johannesburg

2023-06-21

- Test different neural network models (ResNet, ViT)
- Include ERA5 dataset (wind, pressure, temperature, etc.)
- Analyze performance on time series
- Analyze performance on others locations (with and without re-training)
- Test different atmopsheric gases

One more thing

Study case on location out of training dataset

Mount Caramel Forest Fire

The Mount Carmel Forest Fire was a 50km² forest fire occurred the 2 December 2010 on northern Israel. We estimated the fire produced around **5000 tonnes** of NO₂.

2010-11-28

2010-11-29

2010-11-30

2010-12-02

2010-12-03

2010-12-04

Thank you!