

Monitoring Sentinel-2 MSI Radiometric Stability and Calibration with Landsat-8 OLI

Julia Barsi: Science Systems and Applications, Inc, NASA/GSFC Brian L. Markham: NASA/GSFC Obaidul Haque: Stinger Ghaffarian Technologies (SGT, Inc.), USGS/EROS

LANDSAT-8

Landsat-8 OLI Calibration Status

- Radiometric calibration monitored by a suite of on-board calibrators
 - Three pairs of lamps
 - Two solar diffuser panels
 - Maneuvers to look at the moon
- Augmented by
 - Vicarious ground measurements
 - PICS
- OLI has been stable to within 1.5% since launch based on best assessment of data
 - Radiometric calibration updates have been made for drift in responsivity in CA and Blue bands
- Collection-2 processing will be started in Fall 2019, but no major radiometric
 - Or g 13 Mar 2019: CORRECTION
 The USGS does plan to include the GRI for control in Collection-2 reprocessing.

solar panel (pristine)
stim lamp (pristine)
Lunar

- Desert site cross-calibration
 - Acquisitions within 20 minutes
 - S2A: Libya-4, Algeria-3
 - S2B: Algeria-5, Egypt-1
- Lifetime trending to monitor for drift
 - Libya-4, Sudan-1, Algeria-3, Algeria-5, Egypt-1
- Note: In this work, I'm only covering bands that MSI and OLI have in common: 1, 2, 3, 4, 8A, 11, 12
 - Recall that there is significant overlap in the spectral bandpasses of the instruments

- Use MSI and OLI data over Pseudo Invariant Calibration Sites (PICS)
 - More than 95% overlap between acquisitions so view angles are within a couple of degrees
 - All Sentinel data retrieved from scihub or EarthExplorer.
 - Includes data processed with v2.01-2.07 of processing system.
 - All OLI processed by Collection-1 processing system
- Extract Region of Interest from images
 - CNES defined region, ~20x20km
- Compute TOA reflectances for both
- Apply Spectral Band Adjustment Factor (SBAF) to make MSI reflectances "OLI-like"
 - Makes use of Hyperion data
- Compare reflectances directly

PICS Regions

S2VT Meeting, March 2019

Exact regions defined in the backup slides

Reflectance Calculation

- For each band:
- OLI TOA reflectance

$$_{LI} = \frac{M * Q_{cal} + A}{cos\theta}$$

- Where:
 - ρ_{OLI} is top-of-atmosphere reflectance
 - M and A are reflectance scaling factors in metadata

 ρ_0

- Q_{cal} is image digital count
- θ is solar zenith angle (90-solar elevation angle from metadata or for ROI)
- MSI TOA reflectance

$$\rho_{MSI} = \frac{Q_{cal}}{QUANTIFICATION_VALUE}$$

- Where:
 - $\rho_{\mbox{\scriptsize MSI}}$ is top-of-atmosphere reflectance
 - Q_{cal} is image digital count
 - QUANTIFICATION_VALUE is provided in the metadata
- Convert MSI TOA reflectance to OLI equivalent reflectance

$$\rho_{MSI}' = \rho_{MSI} * SBAF$$

Cross Calibration Coincident Overpass Results Sentinel-2A

• Reflectance ratio:

 $r = \frac{\rho'_{MSI}}{\rho_{OLI}}$

- Seasonal differences between the instruments for Libya-4 in the VNIR bands
- Offset between Algeria-3 and Libya-4 for CA and Blue
- Better agreement in all other bands

Cross Calibration Coincident Overpass Results Sentinel-2A

- OLI and MSI agree within 0.2% in Green, Red, and SWIR2, 0.7% in NIR (B8A) and 1.2% in SWIR1
- There are larger differences in the CA and Blue, of 0.5-1.5%.
 - However, within a site the results are consistent to within 0.6% (1σ).
- Not a significant change since last meeting

GSFC results

Cross Calibration Coincident Overpass Results Sentinel-2B

- OLI and S2B MSI do not agree as well.
- Green, Red, NIR, SWIR1, SWIR2 are different by 0.6-1.6%
- Differences in CA and Blue are between 1.7 and 3.7%.
 - Again, sites are different but within a site, the results are consistent to within 0.6% (1σ).

GSFC results

Cross Calibration Coincident Overpass Results Sentinel-2A and -2B

Overall, the trends are holding since the last meeting

S2A scenes added since last meeting: Algeria-3: +3 Libya-4: +2

S2A MSI and OLI Lifetime Average Ratios Between Coincident Acquisitions S2B scenes added since last meeting: Algeria-5: +4 Egypt-1: +3

S2B MSI and L8 OLI

Average lifetime ratios between

PICS Lifetime Trending

- Monitor stability of the instruments using PICS trends
 - Libya-4, Sudan-1, Algeria-3
 - Added Algeria-5 and Egypt-1 to lifetime trending
 - Generate trend for each site separately
- ETM+ long-term calibration has been updated based on PICS trends
- OLI long-term stability is monitored with PICS
- Added S2B trending since last meeting

PICS Lifetime Trending

- For each site, accumulate all cloud-free region-of-interest averages
- Correct TOA reflectance for solar zenith angle
 - Empirical adjustment to normalize to a standard reference angle. Accounts for some of the seasonal differences.
- Normalize all site reflectance data to 1
- Calculate slope over time, determine 2-sigma uncertainty of slope

Algeria-3 — Linear (Algeria-3)

S2A PICS Lifetime Trending

- Trending over 3.5 years indicates S2A MSI is stable to within 0.5% based on my trusted sites
 - Egypt-1 is not stable but results are replicated by OLI

S2B PICS Lifetime Trending

- Have just under 2 years of data, so uncertainties are large.
- S2B patterns are not significantly different than OLI trends over the same time period

2018 Publications

- Julia A. Barsi, Bahjat Alhammoud, Jeffrey Czapla-Myers, Ferran Gascon, Md. Obaidul Haque, Morakot Kaewmanee, Larry Leigh & Brian L. Markham (2018) Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites, European Journal of Remote Sensing, 51:1, 822-837, DOI: 10.1080/22797254.2018.1507613
- Helder, D.; Markham, B.; Morfitt, R.; Storey, J.; Barsi, J.; Gascon, F.; Clerc, S.; LaFrance, B.; Masek, J.; Roy, D.P.; Lewis, A.; Pahlevan, N. Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability. *Remote Sens.* 2018, 10, 1340

Conclusions

- Coincident overpasses of pseudo-invariant calibration sites allows for cross calibration with OLI
 - S2A MSI calibration is within 1% for most bands as compared to OLI. Larger difference of up to 1.5% remain in CA and Blue.
 - S2B MSI calibration is generally within 1.5% of OLI, though results appear to have a bias relative to S2A
- PICS lifetime trending
 - S2A MSI calibration is stable to within 0.5%
 - Results for S2B are generally consistent with OLI for the same time period.
 - Another year of data will be helpful

Landsat-9 OLI-2 Progress

- OLI-2 will effectively be a clone of OLI
 - Identical focal plane, telescope, spectral coverage
 - Primary difference is that the OLI-2 downlink will retain all 14-bits
- Build is complete
 - Instrument-level radiometric, spectral and spatial tests were completed Aug-Dec 2018
 - See GLAMR poster for details on spectral characterization
 - Performance is comparable to OLI based on preliminary assessments
- Delivery to spacecraft vendor scheduled for Summer 2019
- Launch scheduled for Dec 2020
- Will occupy the Landsat-7 orbit
 - 8-day coverage between Landsat-8 and -9
 - Landsat-7 will be moved

Backup slides

Data sources

- Sentinel-2 data
 - Scihub, Processing versions 2.01 2.06
- Landsat-8 OLI data
 - USGS, Processing version Collection 1
- Test sites: CEOS pseudo-invariant calibration sites
 - Libya-4, Sudan-1, Algeria-3, Algeria-5, Egypt-1
- No additional measurements were performed

Data sources

Site	Center (latitude,	CEOS site corners	Landsat Path/Row	Sentinel Tile
	longitude)	(latitude, longitude)		
Libya-4	28.55, 23.39	28.65, 23.29 28.65, 23.49 28.45, 23.49 28.45, 23.29	181/40	34RGS
Sudan-1	21.9, 28.0	22.00, 27.90 22.00, 28.10 21.80, 28.10 21.80, 27.90	177/45	35QNE, 35QPE
Algeria-3	30.32,7.66	30.42, 7.56 30.42, 7.76 30.22, 7.76 30.22, 7.56	192/39	32RLU
Algeria-5	31.02, 2,23	31.12, 2.13 31.12, 2.33 30.92, 2.33 30.92, 2.13	195/39	31RDQ
Egypt-1	27.12, 26.1	27.22, 26.0 27.22, 26.2 27.02, 26.2 27.02, 26.0	179/41	35RML

OLI, MSI Spectral Overlap

- MSI Bands have significant spectral overlap with OLI bands
- S2A v3 RSRs has improved overlap in CA, Blue bands

SBAF Results

- Hyperion region is not the same as the CNES region but is contained within the same Landsat scene.
 - Only limited dates available
 - Acquisition time is changing as the EO-1 orbit degrades.
 - EXAMPLE of acquisition times:

Site	Hyperion Acquisition Date	Hyperion Acquisition Time (UTC)	Typical OLI Acquisition Time (UTC)	
Libya4	28 Jul 2015	07:20	09.55	
Libya4	7 Sep 2015	07:28	08.55	
Sudan1	6 Oct 2015	06:58	08:32	
Algeria3	10 Aug 2013	09:26	10.02	
Algeria3	21 Jan 2014	09:19	10.02	

SBAF Results

• Hyperion acquisitions used for SBAF

Region	Date range	Ν	MSI ViewAngle (zenith)	OLI ViewAngle (zenith)
Libya-4	2015.06.04 – 2016.10.27	17	5.72	3.22
Algeria-3	2013.08.10, 2014.01.21	2	5.56	3.72
Sudan-1	2015.10.06	1		
Algeria-5	2012.02.20 – 2013.02.02	5		
Egypt-1	2015.06.28 – 2016.08.14	8		

SBAF Stability

Spectral Band Adjustment Factor

• To compare MSI reflectances to OLI reflectances, convert MSI reflectances to equivalent OLI reflectances through Hyperion

$$SBAF = \frac{\hat{\rho}_{OLI}}{\hat{\rho}_{MSI}} = \frac{\frac{\int \rho_H(\lambda) RSR_{OLI}(\lambda) d\lambda}{\int RSR_{OLI}(\lambda) d\lambda}}{\frac{\int \rho_H(\lambda) RSR_{MSI}(\lambda) d\lambda}{\int RSR_{MSI}(\lambda) d\lambda}}$$

- where:
 - $\rho_{\text{H}}(\lambda)$ is TOA reflectance of the target area from Hyperion
 - $\hat{\rho}_{OLI}$ and $\hat{\rho}_{MSI}$ are simulated TOA reflectances
 - $\text{RSR}_{\text{OLI}}(\lambda)$ and $\text{RSR}_{\text{MSI}}(\lambda)$ are the relative spectral responses

SBAF Results

- Robustness of SBAF depends on the availability of cloud-free Hyperion data
 - EO-1 has been decommissioned, so there will be no new Hyperion data
- SBAF is calculated per-band, pertarget. SBAFs are not transferrable to other targets.
- S2A SBAFs have been recalculated with the v3 RSRs.
- Four bands have spectral differences of less than 1%. Blue and Red bands have significant spectral differences (4.5%). Green difference is more variable across regions (1-3%)

● Libya-4 (n=17) ■ Sudan-1 (n=1) ● Algeria-3 (n=2) ◆ Algeria-5 (n=5) ● Egypt-1 (n=8)

Near Simultaneous Overpasses

- Using orbital models, find scenes where OLI and MSI have good overlap
 - Same day acquisition
 - More than 95% of OLI frame is covered by MSI swath
 - Similar view angles

Site	OLI Image Time (average)	MSI Image Time (predicted by orbital model)	MSI View Angles (average Blue band) Zenith/Azimuth	OLI View Angles (average Blue band) Zenith/Azimuth
Libya-4 34RGS	08:54	09:12	5.73/ 97.63	3.25/ 102.06
Algeria-3 32RLU	10:02	10:22	5.56/ 277.72	3.72/ 277.96

