SOIL ORGANIC CARBON VARIATION: A DUAL PERSPECTIVE ON LAND USE CHANGES AND SPATIAL DISTRIBUTION IN NEAMTU CATCHMENT

Alexandra Petronela STOLERIU¹,², Elena Diana BOBRIC¹,²,³, Andreea Florina STOLERIU², Iuliana Gabriela BREABAN¹,²,³

¹Department of Geography, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
²Geoscience Doctoral School, “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
³Institute of Interdisciplinary Research - CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania

ESA Symposium on Earth Observation for Soil Protection and Restoration
Introduction

Soil is the largest land sink of carbon.

- Supporting Biodiversity
- Nutrient Cycling
- Water Retention and Filtration
- Soil Fertility and Productivity
- Climate Regulation
- Carbon Sequestration

Soil and United Nations Sustainable Development Goals

Source: https://www.eea.europa.eu/

- Goal 2: Zero Hunger
- Goal 3: Good Health and Well-being
- Goal 6: Clean Water and Sanitation
- Goal 11: Sustainable Cities and Communities
- Goal 12: Responsible consumption and Production
- Goal 13: Climate action
- Goal 15: Life on Land
Methodology

- **Data**
 - Corine Land Cover 1990, 2018
 - Romanian soil distribution
 - Soil Organic Carbon

Soil sampling
- Sample preparation for analysis
- Sample analysis – pH, conductivity

IN-SITU DATA

Land Monitoring Services

Classified on:
- *World reference base for soil resources*

Soil samples = 65 samples -> 0 – 30 cm
- Analysed using combustion at 1000°C
- *Analytik Jena multi N/C 2100 with HT 1300 solid module*
Study area – Neamtu catchment

Location:
- Northern part of Neamtu county, Carpathian and sub-Carpathian zone;
- 67% = mixed forest
- NE Region of Romania;

Catchment surface: 41808,62 ha
Results

FOREST AND SEMI NATURAL AREAS
(311, 312, 313, 321, 324, 331):
1990 = 77.43 %
2018 = 66.68 %

AGRICULTURAL AREAS
(211, 222, 231, 242, 243):
1990 = 15.06 %
2018 = 24.66 %

ARTIFICIAL SURFACES
(111, 112, 121, 131, 142):
1990 = 7.5 %
2018 = 6.32 %

WATER BODIES
(511):
1990 = 0.009 %
2018 = 2.34 %
Type of soil distribution

Soil organic carbon distribution

The most predominant type of soil:
- **Cambisols** → 69.49%
- **Fluvisols** → 11.19%
- **Phaeozems** → 8.20%
- **Luvisols** → 7.97%

SOC = 7.51 → 224.50 g/kg (0-30cm)

Highest value:
Cambisols = 224.50 g/kg - Coniferous forest

Lowest value:
Fluvisols = 7.5 g/kg - Pastures
Conclusions

➢ Soil organic carbon (SOC) is a critical component of the global carbon cycle and plays a crucial role in maintaining soil health and fertility.

➢ Understanding the variation in SOC levels is essential for effective land management and climate change mitigation.

➢ Land use changes have a significant impact on SOC levels. For example, the conversion of natural ecosystems to agricultural land often leads to a decline in SOC due to the disturbance of soil structure and the loss of organic matter.

➢ SOC levels are often higher in forested areas compared to grasslands or croplands due to the greater input of organic matter from plant litter and root exudates.

ACKNOWLEDGEMENTS
This work was financial supported by the Department of Geography from the “Alexandru Ioan Cuza” University of Iasi, and the infrastructure was provided through the POSCCE-O 2.2.1, SMIS-CSNR 13984-901, No. 257/28.09.2010 Project, CERNESIM (L4).
SELECTIVE REFERENCES

