

Introduction

Soil is the largest land sink of carbon.

Supporting Biodiversity

Nutrient Cycling

SOC Water Retention and Filtration

Soil Fertility and Productivity

Climate Regulation

Carbon Sequestration

Goal 2: Zero Hunger

Goal 3: Good Health and Well-being

Goal 6: Clean Water and Sanitation

Goal 11: Sustainable Cities and Communities

Goal 12: Responsible consumption and Production

Goal 13: Climate action

Goal 15: Life on Land

Corine Land Cover 1990, 2018 Romanian soil distribution Soil Organic Carbon Sample Sample Soil analysis preparation sampling pН, for analysis

conductivity

Land Monitoring Services

Classified on:

World reference base for soil resources

Soil samples = $65 \text{ samples} \rightarrow 0 - 30 \text{ cm}$

- Analysed using combustion at 1000°C
- Analytik Jena multi N/C 2100 with HT 1300 solid module

Study area

Location:

BULGARIA

- Northern part of Neamtu county, Carpathian and sub-Carpathian zone;
- ➤ 67 % = mixed forest
- ➤ NE Region of Romania;

Catchment surface: 41808,62 ha

Study area – Neamtu catchment

Results

FOREST AND SEMI NATURAL AREAS AGRICULTURAL AREAS

(311, 312, 313, 321, 324, 331):

2018 = 66,68 %

(211, 222, 231, 242, 243):

2018 = 24,66 %

ARTIFICIAL SURFACES

(111, 112, 121, 131, 142):

2018 = 6,32 %

WATER BODIES

(511):

Conclusions

- ➤ Soil organic carbon (SOC) is a critical component of the global carbon cycle and plays a crucial role in maintaining soil health and fertility.
- ➤ Understanding the variation in SOC levels is essential for effective land management and climate change mitigation.
- ➤ Land use changes have a significant impact on SOC levels. For example, the conversion of natural ecosystems to agricultural land often leads to a decline in SOC due to the disturbance of soil structure and the loss of organic matter.
- > SOC levels are often higher in forested areas compared to grasslands or croplands due to the greater input of organic matter from plant litter and root exudates.

ACKNOWLEDGEMENTS

This work was financial supported by the Department of Geography from the "Alexandru Ioan Cuza" University of Iasi, and the infrastructure was provided through the POSCCE-O 2.2.1, SMIS-CSNR 13984-901, No. 257/28.09.2010 Project, CERNESIM (L4).

SELECTIVE REFERENCES

- [1] Albaladejo J., Ortiz R., García-Franco N., Ruiz Navarro A., Almagro M., García-Pintado J., Martínez-Mena M., Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain, J. Soils Sediments, 13 pp. 265–277, 2013.
- [2] Bobric, E. D., Rusu, E., *The dynamics of the forests surfaces between 1990-2012 for the river basin Neamtu*, Water Resources, Forest, Marine and Ocean Ecosystems Conference Proceedings, SGEM 2016, VOL II Book Series: International Multidisciplinary Scientific GeoConference-SGEM p. 655-662, 2016.
- [3] Smith P., Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2), 169-178, 2007.

https://www.eea.europa.eu/signals-archived/signals-2019-content-list/infographics/soil-and-united-nations-sustainable/view https://esdac.jrc.ec.europa.eu/themes/soil-organic-carbon-content https://land.copernicus.eu/en/products/corine-land-cover