

Decomposing the role of dry intrusions for evaporation during Mistral

Yonatan Givon, Douglas Keller Jr, Romain Pennel, Philippe Drobinski, Shira Raveh-Rubin

HIG.

• MedCyclones, July 2024

The Mistral Wind

- Northerly low-level **gap-wind** regime, centered at the Rhône Valley
- ▶ Dominant contributor to **Alpine leecyclogenesis** (Buzzi et al., 2020)

 A primary driver of **deep-water formation** in the Gulf of Lion (GOL) (Keller et al., 2022 & 2024)

Descending motion

Mattocks & Bleck, 1986

DIs – Dry Intrusions

- **Descending** branches of extratropical cyclones
- **Dry and cold** anomalies (Raveh-Rubin & Catto, 2019 , Klaider and Raveh-Rubin, 2023)

Extreme surface impact: gusts, dust, fires, and more (Ilotoviz et al., 2021; Fluck et al., 2022; Magaritz et al., 2023)

Evaporation hot spot

Linking DIs to Mistral

- At times, DIs appear **embedded in the Mistral** flow
- \blacktriangleright Stirred by the dynamical tropopause and **channeled by topography**

Extreme evaporation rates

Objectives

Isolate Mistral evaporation **drivers**

Compare Mistral events with/without **DI**

Quantify **DI contribution** to Mistral evaporation

Reveal underlying mechanisms

Mistral Detection

- **1981-2016** database of Mistral and 60°N DIs is compiled (ECMWF ERA-INTERIM reanalysis).
- ▶ 2734 Mistral days are captured, corresponding to **21% mean frequency** (Givon et al., 2021)

3500

altitude (m)

Dry Intrusion Detection

- ▶ Identified using Lagranto as trajectories with pressure Increase exceeding 400/48 [hPa/hour]
- ▶ Located within 1° of the GOL domain at pressure700 hPa during Mistral days
- ▶ Horizontal and vertical winds tracked along the DI trajectory

23% of Mistral days are co−located with DI trajectories

Mistral Evaporation Drivers

Evaporation anomalies are **decomposed**

(Following Menezes et al., 2019):

 $W/m²$

 -500

Oct 14

Oct 15

Oct 16

Oct 17

WS= 10-meter wind speed $S=$ surface stability (T_{2m} – SST) RH= relative humidity SST= sea surface temperature $\boldsymbol{\rho_a}$ ′= air density

Oct 22

Oct 23

2010

SLHF =
$$
L_v C_e W S (q_a - q_s)
$$
 ρ_a' = air density
\nSLHF = $\frac{\partial Q_l}{\partial W S} W S' + \frac{\partial Q_l}{\partial S} S' + \frac{\partial Q_l}{\partial R H} R H' + \frac{\partial Q_l}{\partial S S T} S S T' + \frac{\partial Q_l}{\partial \rho_a} \rho_a'$

Correlation coefficient = 0.92

Oct 19

Oct 20

Oct 21

Oct 18

Evaporation Response to DI

 DIs **amplify** Mistral evaporation by ~100% on average

 Mistral evaporation dominated by **WS**

> DIs amplify Mistral evaporation mainly by increased WS

Surface winds and SLHF

- Linear correlation suggests anomalies of ~7 m/s lead to ${\sim}200 \ W/m^2$ increase in SLHF
- DIs shift the density plot towards more extreme values

What is the source of momentum for DI - Mistral?

Vertical Momentum Flux (VMF)

- Evaluated along DI trajectory: $VMF_{GOL} \equiv W_{DI@GOL}|V_{DI@GOL}|$
- Correlate to Mistral WS at the GOL
- Increased WS is anti-correlated to VMF **delivered by DIs**

VMF anomalies of $-1[m^2/s^2]$ correspond to ~ -200 [W/m^2] SLHF anomalies

VMF and SLHF

- VMF is **decaying** along the DI trajectory
- **▶ DIs originating closer to the** GOL merge with the Mistral at **earlier stages** of their lifetime, forming **steeper DIs**

Steeper DIs charge the Mistral with maximum VMF, leading to extreme evaporation rates

Summary

Mistral evaporation is dominated by **wind speed**

- DIs co-occur with Mistral on a **23% mean frequency**
- DIs enhance Mistral evaporation by over **100%**
- Even greater amplification for certain **PV clusters** (up to **300%**)
- VMF is critical for **extreme** SLHF

Givon, Y., Keller Jr, D., Pennel, R., Drobinski, P., & Raveh-Rubin, S. (2024). Decomposing the role of dry intrusions for ocean evaporation during mistral. QJRMS

Enhanced DI-Mistral evaporation is driven by increased WS that stem from VMF, controlled by the DI slope.

Mistral Seasonality

ERA-INTERIM data years 1981-2016 yields ~2700 Mistral days (21% annual mean frequency)

 Long events are more frequent in winter

Mistral Response to DI

- **Enhanced upper-level trough**
- Eastward-shifted ridge
- **Deeper cyclone**
- **Enhanced evaporation**

Evaporation impact extends well beyond the GOL

Cluster Analysis - PV

1000

900

800

700

600

500

400

300

P [hPa]

 \circ

 (7)

 (13)

 -2.5

 -2

 (12)

PVU

Cluster Analysis - SLP

 -8

 $\mathbf 0$

hPa

 -4

 $\overline{4}$

 $\overline{2}$

8

6

Cluster Analysis - SLHF

 -150

 -100

 $W \cdot m^{-2}$

DI Origins

Schematic Revisited

Spatial Difference - DI1 vs DI2

