A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements

Rayan Imam(1), Luca Spogli(1,2), Lucilla Alfonsi(1), Claudio Cesaroni(1), Yaqi Jin(3), Lasse B. N. Clausen(3), Alan Wood(4), Yuhao Zheng(5), Chao Xiong(5,6), Wojciech J. Miloch(3)

(1) Istituto Nazionale di Geofisica e Vulcanologia, Italy (2) SpacEarth Technology, Italy (3) University of Oslo, Norway (4) University of Birmingham, UK (5) Department of Space Physics, Electronic Information School, Wuhan University, China; (6) Hubei Luojia Laboratory, China
• There has been a growing interest in using Swarm data as a proxy for the GNSS scintillation activity.

• This in view also to exploit present and future LEO missions to model the effect of small-scale irregularities on L-band signals in the critical areas.

Imam et al. A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements

GPS SCINTILLATION AND SWARM

Scintillation caused GPS signal interruption of Swarm
[Xiong et al., 2016; 2018]
• Inspired by WAM, we have the capability to **model the S4 index based on Swarm FP**

 • Significantly longer dataset w.r.t. DE2 (sol max conditions only)
 • Swarm carries other instruments which assist the interpretation and validation
 • More ground-based observations are now available for model validation

• The 16 Hz sampling rate, combined with the Swarm orbital features, allows modelling the effect of spatial scales with scale size of ~ 500 m along the Swarm flight direction (roughly N-S), which are slightly above the Fresnel’s scale relevant for L-band scintillations (few hundreds of metres) affecting the propagation of GNSS signals.
Imam et al. A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements.
S4 from Swarm is validated against S4 from GNSS receivers.

→ eSWua GNSS scintillation network (7+ low latitude stations) Sep 2021 – Apr 2023

Tatsuhiro Yokoyama (2017)
Imam et al. A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements

Swarm A – ESWUA GNSS CONJUNCTIONS 09.2021-04.2023

SwarmA - 20-Oct-2021 11:50 --> 13-Apr-2023 17:02 -- L0=500 [m]
Imam et al. A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements

SWARM A – ESWUA GNSS CONJUNCTIONS 09.2021-04.2023

SwarmA - 20-Oct-2021 11:50 --> 13-Apr-2023 17:02 -- L0=500 [m]
Imam et al. A model to estimate the L-band amplitude scintillation index from Swarm faceplate electron density measurements

SWARM A- MALINDI (KENYA) CONJUNCTIONS
01.07.2023- 31.01.2024
REMARCHES

- We developed a **Swarm amplitude scintillation index (S4)** for measuring irregularities that affect L-band Global Navigation Satellite Systems (GNSS) signals.

- Such an index from Swarm measurements is important for filling ground-based GNSS scintillation **measurement gaps**.

- We **validate** the model inputs and outputs using Swarm’s conjunctions with GNSS and ionosondes.

- This S4 data product has the potential to be used for **space weather applications** and for near real-time specification of the ionosphere.

Acknowledgement: Rayan Imam’s research fellowship is funded by the Swarm Space Weather Variability of Ionospheric Plasma (Swarm VIP) project, that has been funded by the European Space Agency, contract 4000130562/20/I-DT with the title “Swarm+4D Ionosphere. Rayan Imam acknowledges the funding from Rete Multiparametrica Space Weather PECASUS to attend this conference.
Swarm 10 Year Anniversary & Science Conference 2024