

Fostering collaborative working by means of notebook development platforms and connected services in the field of large aerosol and cloud data processing

an OLCI data application example

ATMOS 2024, 2024-07-04 Patrik Kovacs & Verena Lanzinger

Agenda

Collaborative Cloud Working

- Tech Stack
- Example Use Cases
- Demo

Collaborative Cloud Working Status Quo

Current challenges

- General notebook environment on cloud with limited or no collaboration options
- **EODATA** availability
- Plugging custom data into the environment
- Python environments are built and shared manually by each user
- Dealing with cloud dashboards to set up a parallel processing

Collaborative working and joint development solutions

- Customization (S3 LSR) (DIVA)
- □ Kubernetes (S3 LSR) (DIVA)
- □ (DASK) Parallelization (S3 LSR)
- □ EO data on modern DIAS (S3 LSR)
- □ Shared environments (e.g., conda) (S3 LSR) (DIVA)
- □ "Bring your own data" solution (S3 LSR)
- □ No additional step of transferring the results (S3 LSR) (DIVA)
- □ Collaborative working joint development (S3 LSR) (DIVA)
- User management permission (S3 LSR) (DIVA)

Technology – Tech Stack

Use case: S3 LSR

Use Case Sentinel-3 Land Surface Reflectivity Auxiliary Product

EUMETSAT funded project

s **cloudflight**

Motivation

Creating OLCI global product with a highly accurate retrieval algorithm using EODATA and auxiliary data as input.

Challenge	Solution
Implementing a prototype on a remote environment	Collaborative notebook environment in the cloud with share space
Ensuring data availability	Accessing EODATA and plugging in the auxiliary/custom input data (e.g. cloud-mask)
Team members are using the same Python environment	Building Python environments in a shared environment manager
Establishing the global product with the implemented prototype	Creating a parallel cluster managed directly from the notebook environment and process the global input on the cluster running the code in the cloud
Sharing the results	Directly sharing the output storage with the community/partners

Presented by Dr. Pavel Litvinov at the Sentinel 3 Validation Team Meeting in Darmstadt December 2023

SCAN to ABSTRACT

Use case: DIVA

Use Case DIVA - Demonstration of an Integrated approach for the Validation and exploitation of Atmospheric missions

ESA funded project

Motivation

Creating a custom platform for specific data collected from different sources (Ceilometer, Spectrometer, Lidar, and Photometer), tailored to the needs of the user groups

Challenge	Solution
Collaborative notebook environment for different scientific groups with shared space	Jupyter environment with shared data space and shared Python environments
Customized user API for accessing the project specific data	Customized versioned Python packages installed automatically into the environment
User and permission management of these group members	Permission handling with Keycloak

Presented by Dr. David Fuertes at the ATMOS conference in 2021

SCAN to

Let's talk about solutions !

Patrik Kovacs

patrik.kovacs@cloudflight.io

Verena Lanzinger

verena.lanzinger@cloudflight.io