

COOD OZONE

Fachbereich 01

Extension of the S5P/TROPOMI CCD tropospheric ozone retrieval to middle latitudes

Swathi Maratt Satheesan, Kai-Uwe Eichmann and Mark Weber

Institute of Environmental physics, University of Bremen, Germany

Email: swathi@iup.physik.uni-bremen.de

ATMOS 2024, 05.07.2024

Trop. O₃ - Sources and impacts

- One of the important pollutant and greenhouse gas
- Bad ozone : Contains 10% of atmospheric ozone

Sources:

- Stratosphere-troposphere exchange.
- The photochemical reactions of precursors, hydrocarbons and nitrogen oxides from natural and anthropogenic sources.

Impacts:

Contributes to global warming

Causes health issues

Millions of pollution related deaths and chronic diseases, in every year

Toxic to plants

 \geq

Adversely affects plant photosynthesis, doubling the climate impact.

Introduction

Trop. O₃ retrievals and satellite retrieval algorithms

- Crucial understanding:
- > Essential to understand and regulate tropospheric ozone levels.
- Measurement techniques:
- > Ozonesondes and LIDARs: Accurate TCO measurements.
- Satellites: Needed for broad daily coverage.
- Challenges:
- The high spatio-temporal variability complicates satellite measurements.
- Solutions:
- Satellite retrieval algorithms improve accuracy.

Image credit : ESA

Convective Cloud Differential (CCD) method

Standard Method:

- Limited to the tropical band (20°S-20°N)
- Not applicable to geostationary satellites (ESA Sentinel-4, NASA TEMPO, and GEMS covering only middle latitudes)
- Successful Applications:
- Applied to satellite sensors: Aura OMI, MetOp GOME-2, Sentinel-5P TROPOMI.

The standard CCD method

- Stratospheric/Above Cloud Column Ozone (ACCO) is measured above deep convective clouds (Cloud Fraction > 0.8) over the Pacific sector (70°E-170°W, 20°S-20°N)
- Correct ACCO up to reference altitude (e.g. 270 hPa ~10.5 km) using a climatology.
- Subtract the ACCO from the total ozone (**CF < 0.2**) to compute Trop. Column Ozone (**TCO**).

Extension of CCD to middle latitudes

Challenges

- > The lack of high reflective clouds to measure ACCO/stratospheric column ozone.
- Large spatio-temporal variability of stratospheric ozone.

Proposed solutions and evaluations

- Ziemke et al. (2005) suggested extending CCD to higher latitudes, focusing on the Pacific with sufficient cloud cover. Initially used TOMS data (1979-2003) across mid-latitudes (50°S-60°N).
- Ziemke et al. (2012) evaluated the CCD method in higher latitudes (60°S-60°N) over the Pacific using Aura OMI and MLS ozone measurements (2004-2010).

This work presents the first successful application of CCD over middle latitudes for global tropospheric ozone retrieval.

CLCD - CHORA-Local Cloud Decision algorithm

Solutions to the Challenges

- Lack of deep convective clouds reaching 270 hPa
- Lowered the reference altitude to 450 hPa

 Representative \checkmark of mid troposphere (Worden et al., 2009, Williams et al., 2019, TOAR-II)
- Large Stratospheric ozone variability
- Local cloud sector varying both latitudinally and longitudinally \checkmark
- High resolution TROPOMI data.
- Homogeneity criteria

Methodology

Validation with ozonesondes

- ✓ Monthly averaged CLCD-TCOs at 450 hPa were determined over the middle latitudes (60°S-60°N) from TROPOMI for the period from 2018 to 2022.
- ✓ Validated with spatially collocated **SHADOZ/WOUDC/NDACC** ozonesondes from **31** stations.

Meridional variation of mean bias and scatter

- Solution Sol
- Higher bias and scatter towards higher latitudes. North : Stronger variability in stratospheric ozone (Cooper et al., 2014; Williams et al., 2019).
- ➤ Ascension Island : Remote low level clouds → Over estimation of ACCO → Underestimation of TCO

Summary & conclusions

- Monthly averaged CLCD-TCOs at 450 hPa were determined over the middle latitudes (60°S-60°N) from TROPOMI for 2018-2022
- > The accuracy was validated by comparing with **SHADOZ/WOUDC/NDACC** ozonesondes from **31** stations.
- CLCD-TCOs show good agreement with ozonesondes at most stations, with maximum observed bias and dispersion below 6 DU and 5 DU, respectively.
- At three stations from different regions, Natal [5.4°S, 35.4°W], Irene [25.9°S, 28.2°E], and Lindenberg [52.2°N, 14.1°E]. The CLCD method shows excellent agreement with ozonesondes, with minimal bias and scatter: 0.5 ± 0.9 DU, 0.8 ± 1.5 DU, and 1.0 ± 2.6 DU, respectively
- > These results highlight the benefits of using the local cloud reference sector in mid-latitudes.

Thank you