MICROCARB

MicroCarb CNES microsatellite mission to characterize CO₂ surface fluxes:

Sizing of the mission centre

2019 Conference on Big Data from Space: BiDS'19

CNES - Céline L'HELGUEN

MICROCARB

MicroCarb mission: in what context?

- Objectives:
 - Remotely measures CO₂ column integrated volume mixing ratios in the atmosphere
 - Helps to better assess carbon fluxes (the most important anthropogenic greenhouse gas)
- Previous missions:
 - JAXA: GOSat (2009)
 - NASA: OCO-2 (2014)

- Chinese missions: TanSat ACGS, Feng Yun-3D GAS, Gaofen-5 GMI
- The first European mission:
- ****
- Microsatellite Myriade
- Launch scheduled in mid-2021, expected duration of 5 years

2

MicroCarb mission: contributors

- Project led by CNES, the French Space Agency
- In partnership with:
 - UKSA, UK manufacturers and science laboratories
 - the French science laboratories, in particular IPSL
 - EUMETSAT for the operation of the data processing centre
 - National and European industries
- Funded by the French Government PIA (« Plan d'Investissement d'Avenir »)

MicroCarb mission: major challenges

- Expected data:
 - estimation of CO₂ concentration gradients (a few ppm)
 - generation of CO₂ fluxes maps
- Extremely high precision required:
 - 1 ppm (0.25%) of random error
 - 0.1 ppm (0.025%) of regional bias
- Scientific performances are crucial for the success of the mission!
 - Drive performances on satellite, instrument and processing steps

MICROCARB

Science objectives: instruments

- Developed by Airbus Defense & Space
- Spectrometer:
 - Oxygen (0_2 at 0.76 and 1.27 μ m) to retrieve surface pressure
 - Carbon dioxide (CO₂ at 1.6 μm and 2.0 μm)
- Imager:
 - Improvement of the location precision
 - Detect clouds

A microsatellite... But a big ground segment!

CCC – Command-Control Centre - CNES

Stations – CNES network

MicroCarb satellite

MICRSCARB

MICROCARB

MicroCarb levels of product

8 © cnes

MicroCarb levels of product - functions

Level 1

Level 1A/1B Radiometric calibration Spectral calibration

Geometric calibration

Level 1C – Cloud detection Comparison with :

- ADAM DB
- Sentinel 2 data
- between estimated Psurf (ECMWF + DEM) and measured Psurf (inversion with <u>4ARTIC/4AOP</u>)

Level 2

Inversion of luminance sprectra to estimate the observed geophysical state based on <u>4ARTIC/4AOP</u>

Level 3

Computed daily or monthly

Level 0

MicroCarb algorithms: 4ARTIC computation of CO₂ concentration

MicroCarb levels of product - functions

Level 1

Level 1A/1B

Radiometric calibration Spectral calibration Geometric calibration

Level 1C – Cloud detection Comparison with :

- ADAM DB
- Sentinel 2 data
- between estimated Psurf (ECMWF + DEM) and measured Psurf (inversion with <u>4ARTIC/4AOP</u>)

Level 0

Level 0

MicroCarb levels of product - functions

Level 1

Level 1A/1B

Radiometric calibration Spectral calibration Geometric calibration

Level 1C – Cloud detection Comparison with :

- ADAM DB
- Sentinel 2 data
- between estimated Psurf (ECMWF + DEM) and measured Psurf (inversion with <u>4ARTIC/4AOP</u>)

Level 2

Inversion of luminance sprectra to estimate the observed geophysical state based on <u>4ARTIC/4AOP</u>

(11) © cnes

MicroCarb levels of product - functions

Level 1

Level 1A/1B

Radiometric calibration Spectral calibration Geometric calibration

Level 0

93900 units/day

Level 1C – Cloud detection Comparison with :

- ADAM DB
- Sentinel 2 data
- between estimated Psurf (ECMWF + DEM) and measured Psurf (inversion with <u>4ARTIC/4AOP</u>)

Level 2

Inversion of luminance sprectra to estimate the observed geophysical state based on <u>4ARTIC/4AOP</u>

MicroCarb levels of product - functions

MicroCarb levels of product - functions

MICROCARB

MicroCarb levels of product - functions

MICROCARB

MicroCarb levels of product - functions

Note : a unit is a Field Of View.

Can Stock Photo

© cnes

EUMETSAT production centre IT sizing

- For nominal processing: <u>3000 cores required</u>
 - EUMETSAT IT architecture double for processing steps
 - To face possible delays and unavailability
 - To distribute Level 2 products in less than 7 days and hopefully in less than 48h
- For reprocessing: <u>9000 cores required</u>
 - 1 year of data shall be reprocessed in less than 2 months
 - 3 reprocessing campaigns during the first year
 - 1 reprocessing campaign per year afterwards

Cumulative volume of produced data

Cumulative volume of data generated during MicroCarb mission

Conclusion

- EUMETSAT and CNES Invitations To Tender in progress
- MicroCarb: probationary project for CNES
- Small budget but large IT needs
- A major challenge to:
 - Specify, Develop, Integrate the processing chains
 - Respect the schedule and the budget
 - Ensure high quality products for the science community.

Thank you

© cnes