

# The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission and the PACE Postlaunch Airborne eXperiment

Kirk Knobelspiesse, Brian Cairns, Ivona Cetinić, Sean Foley, Meng Gao, Antonio Mannino, Chamara Rajapakshe, Andrew Sayer, Jeremy Werdell, NASA Goddard Space Flight Center; Montserrat Pinol Sole, ESA EarthCARE validation meeting, November 16th, 2023



pace.gsfc.nasa.gov



### 1. The NASA PACE Mission

- 2. The PACE-PAX validation field campaign
- 3. Potential PACE EarthCARE synergy
- 4. Potential PACE EarthCARE validation synergy



## 1. The NASA PACE Mission

- 2. The PACE-PAX validation field campaign
- 3. Potential PACE EarthCARE synergy
- 4. Potential PACE EarthCARE validation synergy



**0**C

340-890 nm in 2.5 nm steps 7 discrete SWIR, 940-2260 nm 1-2 day coverage ±20° tilt, 1km



HARP2 440, 550, 670, 870 nm 10-60 viewing angles wide swath polarimeter, 3 km



380-770 nm in 2-4 nm steps 5 viewing angles narrow swath polarimeter, 2.5 kg



## NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission

PACE will extend key systematic ocean color, aerosol, & cloud climate data records, reveal the diversity of organisms fueling marine food webs, and introduce new methods to observe aerosols and clouds, the largest source of climate uncertainty.

#### **Characteristics:**

- January 2024 launch!
- 676.5 km, polar, ascending orbit, 98°
- Sun synchronous, 13:00 Equatorial crossing
- Data to OB.DAAC (oceancolor.gsfc.nasa.gov)

After launch, there will be 60 days of on-orbit commissioning activities.

Official data distribution will follow, with heritage and required products first, followed by advanced and polarimetric products.

pace.gsfc.nasa.gov @NASAOcean





## PACE required products: OCI only

| Data Product                                                            | Baseline Uncertainty |  |  |  |  |
|-------------------------------------------------------------------------|----------------------|--|--|--|--|
| Water-leaving reflectances centered on (±2.5 nm) 350, 360, and          | 0.0057 or 20%        |  |  |  |  |
| 385 nm (15 nm bandwidth)                                                |                      |  |  |  |  |
| Water-leaving reflectances centered on (±2.5 nm) 412, 425, 443,         | 0.0020 or 5%         |  |  |  |  |
| 460, 475, 490, 510, 532, 555, and 583 (15 nm bandwidth)                 |                      |  |  |  |  |
| Water-leaving reflectances centered on (±2.5 nm) 617, 640, 655,         | 0.0007 or 10%        |  |  |  |  |
| 665 678, and 710 (15 nm bandwidth, except for 10 nm bandwidth           |                      |  |  |  |  |
| for 665 and 678 nm)                                                     |                      |  |  |  |  |
| Ocean Color Data Products to be Derived from Water-leaving Reflectances |                      |  |  |  |  |
| Concentration of chlorophyll-a                                          |                      |  |  |  |  |
| Diffuse attenuation coefficients 400-600 nm                             |                      |  |  |  |  |
| Phytoplankton absorption 400-600 nm                                     |                      |  |  |  |  |
| Non-algal particle plus dissolved organic matter absorption 400-600 nm  |                      |  |  |  |  |
| Particulate backscattering coefficient 400-600 nm                       |                      |  |  |  |  |
| Fluorescence line height                                                |                      |  |  |  |  |

| Data Product                                              | Range           | Baseline    |
|-----------------------------------------------------------|-----------------|-------------|
|                                                           |                 | Uncertainty |
| Total aerosol optical depth at 380 nm                     | 0.0 to 5        | 0.06 or 40% |
| Total aerosol optical depth at 440, 500, 550 and 675 nm   | 0.0 to 5        | 0.06 or 20% |
| over land                                                 |                 |             |
| Total aerosol optical depth at 440, 500, 550 and 675 nm   | 0.0 to 5        | 0.04 or 15% |
| over oceans                                               |                 |             |
| Fraction of visible aerosol optical depth from fine mode  | 0.0 to 1        | ±25%        |
| aerosols over oceans at 550 nm                            |                 |             |
| Cloud layer detection for optical depth $> 0.3$           | NA              | 40%         |
| Cloud top pressure of opaque (optical depth $>$ 3) clouds | 100 to 1000 hPa | 60 hPa      |
| Optical thickness of liquid clouds                        | 5 to 100        | 25%         |
| Optical thickness of ice clouds                           | 5 to 100        | 35%         |
| Effective radius of liquid clouds                         | 5 to 50 µm      | 25%         |
| Effective radius of ice clouds                            | 5 to 50 µm      | 35%         |
| Atmospheric data products to be derived from the above    | ve              |             |
| Water path of liquid clouds                               |                 |             |
| Water path of ice clouds                                  |                 |             |

We must show we can successfully measure these products after launch

No required Level 2 products from the polarimeters, Level 1 at commissioning

#### The FULL list of products we will produce goes far beyond this. See:

https://pace.oceansciences.org/ data\_table.htm



Atmosphere



|                             |                                       | PACE Validation Plan – July 2020 |
|-----------------------------|---------------------------------------|----------------------------------|
| Plankton, Ae:<br>PACE Scier | rosol, Cloud, ocean Ecosyste          | em (PACE) mission                |
|                             | PACE                                  |                                  |
| National Aeronautics and    | Goddard Space Flig<br>Greenbelt, Mary |                                  |

pace.oceansciences.org/documents.htm

## PACE validation plan

Validate of required and advanced products This will utilize

- surface networks
- regular data collection from ships
- satellite data comparison
- a dedicated airborne field campaign



#### VIIRS SNPP AOT(868) vs. AERONET-OC

Bland Altman plot aot868\*



### PACE Postlaunch Airborne eXperiment (PACE-PAX)

validation that can only be done with an airborne, multi-sensor field campaign





## 1. The NASA PACE Mission

## 2. The PACE-PAX validation field campaign

- 3. Potential PACE EarthCARE synergy
- 4. Potential PACE EarthCARE validation synergy



### PACE Postlaunch Airborne EXperiment



















herlands Institute for Space Research

#### An airborne field mission to validate the NASA PACE mission with coordinated observations

- California, 3-27 September 2024 ٠
- Remote sensing proxy observations from NASA ER-2
- In situ sampling with CIRPAS Twin Otter ٠
- 60 flight hours for each aircraft
- Day trips from Santa Barbara with R/V Shearwater ٠
- Coordinated observations under PACE
- Coordinated observations over surface sites & ship ٠





### **PACE Postlaunch Airborne EXperiment**



























## PACE-PAX instrumentation

| Instrument           | Platform      | Role                                  | Lead PI                 | Institution   |
|----------------------|---------------|---------------------------------------|-------------------------|---------------|
| AirHARP              | ER-2          | PACE/HARP2 polarimetry proxy          | J. Vanderlei Martins    | UMBC          |
| PICARD               | ER-2          | PACE/OCI spectrometer proxy           | J. Jacobson / K. Meyer  | NASA ARC/GSFC |
| PRISM                | ER-2          | PACE/OCI spectrometer proxy           | David R. Thompson       | JPL           |
| SPEX Airborne        | ER-2          | PACE/SPEXone polarimetry proxy        | B. van Diedenhoven      | SRON          |
| HSRL-2               | ER-2          | Aerosol/cloud/ocean Lidar             | T. Shingler / J. Hair   | NASA LaRC     |
| RSP                  | ER-2          | Multi-angle polarimeter ref.          | B. Cairns / K. Sinclair | NASA GISS     |
| Facility instruments | Twin Otter    | Aerosol/cloud in situ instruments     | Anthony Bucholtz        | NPS           |
| LARGE                | Twin Otter    | Aerosol/cloud in situ instruments     | Luke Ziemba             | NASA LaRC     |
| LI-Nephelometer      | Twin Otter    | Aerosol phase functions               | Adam Ahern              | NOAA          |
| ISARA                | Twin Otter    | In situ data synergy activity         | Snorre Stamnes          | NASA LaRC     |
| Ocean instruments*   | RV Shearwater | Day cruises, instrumentation TBD      | Mike Ondrusek           | NOAA          |
| HyperNAV*            | Ocean floats  | Radiometric calibration ocean floats  | Andrew Barnard          | OSU           |
| AERONET, AERONET-OC* | Surface       | Aerosol prop., water leaving radiance | P. Gupta / E. Lind      | NASA GSFC     |

\*externally supported activities



Validation objectives

1. Validate new retrieval properties

2. Assess spatial and temporal scale impact on validation

3. Validate in a narrow swath

4. Validate radiometric and polarimetric properties

5. Target specific geometries, season, and time of day

6. Focus on specific processes or phenomena

## Our plan is based on a 'Validation Traceability Matrix' (VTM)

The VTM flows from top level objectives to the measurements needed to satisfy them and the requirements under which they are made



| Validation objectives                                       | ID | Measurement objectives                                           | Importance,<br>w | Objective<br>total |
|-------------------------------------------------------------|----|------------------------------------------------------------------|------------------|--------------------|
|                                                             | Α  | Land surface parameters                                          | 2                | 35                 |
|                                                             | В  | Ocean radiometric parameters                                     | 2                |                    |
| 1. Validate new                                             | С  | Aerosol parameters over the ocean                                | 10               |                    |
| retrieval properties                                        | D  | Aerosol parameters over land                                     | 10               |                    |
|                                                             | Е  | Cloud parameters                                                 | 10               |                    |
|                                                             | F  | Ocean surface parameters                                         | 1                |                    |
| 2. Assess spatial and                                       | Α  | Cloud parameters                                                 | 8                | 16                 |
| temporal scale impact<br>on validation B Aerosol parameters |    | 8                                                                |                  |                    |
| 2 Validata in a narrow                                      | Α  | Aerosol parameters over the ocean                                | 10               | 25                 |
| 3. Validate in a narrow                                     | В  | Aerosol parameters over land                                     | 10               |                    |
| swath                                                       | С  | Cloud parameters                                                 | 5                |                    |
| 4. Validate                                                 | Α  | Validate large reflectances                                      | 3                | 12                 |
| radiometric and                                             | В  | Validate large reflectances with high polarization               | 3                |                    |
| polarimetric                                                | С  | Validate large reflectances with low polarization                | 3                |                    |
| properties                                                  | D  | Overfly vicarious calibration sites                              | 3                |                    |
| 5. Target specific                                          | Α  | Aerosol over ocean retrieval geometry dependence                 | 2                | 6                  |
| geometries, season,                                         | В  | Aerosol over land retrieval geometry dependence                  | 2                |                    |
| and time of day                                             | С  | Cloud property retrieval geometry dependence                     | 2                |                    |
|                                                             | Α  | High aerosol loads over land                                     | 4                | 29                 |
|                                                             | В  | High aerosol loads over ocean                                    | 4                |                    |
|                                                             | С  | Multiple aerosol layers                                          | 1                |                    |
|                                                             | D  | Aerosol under thin cirrus                                        | 2                |                    |
|                                                             | E  | Aerosol above liquid phase cloud                                 | 4                |                    |
| 6. Focus on specific                                        | F  | Broken clouds with complex structure                             | 4                |                    |
| processes or                                                | G  | Dust aerosols over ocean                                         | 1                |                    |
| phenomena                                                   | н  | Aerosol and ocean parameters over turbid waters                  | 2                |                    |
|                                                             | I  | Aerosol and ocean parameters over biologically productive waters | 5                |                    |
|                                                             | J  | Aerosol and ocean parameters with and without reflected sunglint | 1                |                    |

Validation Traceability Matrix (VTM) based on PACE Science and Applications Team (SAT) input

"Importance" weighting helps prioritize observations, decision support in flight planning

Aggregate assessments can 'score' the value of an individual instrument, flight plan, etc. to the overall mission



Editors:

#### "Planning for PACE relevant field campaigns" white paper and Validation Traceability Matrix (VTM)



#### Full Validation Traceability Matrix



Both of these are on the PACE website: https://pace.oceansciences.org/campaigns.htm



## 1. The NASA PACE Mission

- 2. The PACE-PAX validation field campaign
- 3. Potential PACE EarthCARE synergy
- 4. Potential PACE EarthCARE validation synergy



|                             | PACE                                                                                                                                                                                                                                                                           | 2900                                                                                                           | EarthCARE                                                                                                                                 | ESA   JAXA                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Launch                      | January, 2024                                                                                                                                                                                                                                                                  |                                                                                                                | May, 2024                                                                                                                                 |                                                                  |
| Orbit                       | Polar ascending sun-sync 13:00                                                                                                                                                                                                                                                 | Space Flight Center                                                                                            | Polar descending sun-sync 14:00                                                                                                           |                                                                  |
| Institutions                | NASA; UMBC & SRON/Airbus                                                                                                                                                                                                                                                       | WSA Colour                                                                                                     | ESA & JAXA                                                                                                                                | earthcare                                                        |
| Instruments                 | OCI UV-SWIR hyperspectral imager<br>HARP2 multi-angle polarimeter<br>SPEXone multi-angle polarimeter                                                                                                                                                                           |                                                                                                                | ATLID HSRL UV lidar<br>CPR Cloud profiling radar<br>MSI multi-spectral imager<br>BBR broad-band radiometer                                |                                                                  |
| Objectives<br>(paraphrased) | <ol> <li>Extend key ocean biology, cloud and ac</li> <li>Make new ocean color measurements<br/>of the carbon cycle</li> <li>Make global aerosol and cloud measur<br/>and radiative forcing uncertainty</li> <li>Improve knowledge of atmospheric inf<br/>vice versa</li> </ol> | erosol climate data records<br>to better understanding<br>ements to reduce climate<br>fluence on the ocean and | Advance our understanding of the role that<br>play in reflecting incident solar radiation b<br>trapping infrared radiation emitted from E | at clouds and aerosols<br>ack out to space and<br>arth's surface |
| Validation plans            | <ul> <li>Extensive collection and archive of ocea<br/>(<u>https://seabass.gsfc.nasa.gov/</u>)</li> <li>NASA HQ supported PACE Validation tea</li> <li>PACE-PAX for validation that can only had<br/>field campaign. Also, involvement with</li> </ul>                          | an and atmosphere data<br>am<br>appen with an airborne<br>ARCSIX                                               | Described in this meeting!                                                                                                                |                                                                  |





## **EarthCARE vs PACE: Collocation Analysis**

(Full analysis in backup slides)

Montserrat Pinol Sole ESTEC / EOP-PES 24/Oct/2023 Ref. EOPPES-PTN-068 Issue 1

ESA UNCLASSIFIED – For ESA Official Use Only



### **Orbit Characteristics**



| Satellite (LEO) | Repeat Cycle [days]/<br>Cycle Length [orbits] | Avg. Geodetic<br>Altitude [km] | MLST at ANX [h] | Inclination [deg] |
|-----------------|-----------------------------------------------|--------------------------------|-----------------|-------------------|
| EarthCARE       | 22/325                                        | 408.3                          | 14:00           | 97.03             |
| PACE            | 11/161                                        | 690.6                          | 13:00           | 98.11             |



- Similar MLST for PACE and EarthCARE  $\rightarrow$  collocations distributed geographically in regions other than polar regions
- PACE is ~ 280 km higher than EarthCARE  $\rightarrow$  satellites overtake each other after 1.08 days

## EarthCARE Ground-Tracks vs PACE SPEXone



- 30 days simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)





Daytime collocations within 5 minutes take place once per base period, around - 42°



## 1. The NASA PACE Mission

- 2. The PACE-PAX validation field campaign
- 3. Potential PACE EarthCARE synergy
- 4. Potential PACE EarthCARE validation synergy



## Validation campaign comparison

|                                                                                                                                    | PAC                                                                                                            | E-PAX                                                                                                                                                                                                                                                                                                                                         |                                                                  | PEF                                  | RCUSSION                                                                                           | MAESTRO                                                         |                                                          |                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Dates                                                                                                                  | Californal and nearby coastal areas<br>Sept 3-27, 2024                                                         |                                                                                                                                                                                                                                                                                                                                               | Location<br>Dates                                                | Germany, Ba<br>June - Octob          | irbados, Cape Verde<br>er, 2024                                                                    | Location<br>Dates                                               | Cape Ver<br>Aug 10 - S                                   | de<br>Sept 10, 2024                                                                                                                                                      |
| Leadership                                                                                                                         | Kirk Knobelspie                                                                                                | esse, Brian Cairns, Ivona Cetinić                                                                                                                                                                                                                                                                                                             | Leadership                                                       | Bjorn Steven                         | s (MPI-M) and Silke Groß                                                                           | Leadership                                                      | Sandrine<br>(LATMOS                                      | Bony (LMD) and Julien Delanoë<br>)                                                                                                                                       |
| Documentation                                                                                                                      | https://pace.o                                                                                                 | ceansciences.org/campaigns.htm                                                                                                                                                                                                                                                                                                                | Documentation                                                    | https://halo-<br>tooc/               | research.de/sience/future-missions/ec-                                                             | Documentation                                                   | <u>https://m</u>                                         | aestro.aeris-data.fr/                                                                                                                                                    |
| Archive<br>Platforms                                                                                                               | <u>https://www-a</u><br>ER-2 (air), Twir                                                                       | air.larc.nasa.gov/missions/pacepax<br>n Otter (air), R/V Shearwater (ship)                                                                                                                                                                                                                                                                    | Archive<br>Platforms                                             | Archive<br>Platforms HALO (Aircraft) |                                                                                                    | Archive<br>Platforms                                            | ATR-42 (Aircraft)                                        |                                                                                                                                                                          |
| Instrument                                                                                                                         | Platform                                                                                                       | Role                                                                                                                                                                                                                                                                                                                                          | Instrument                                                       | Platform                             | Role                                                                                               | Instrument                                                      | Platform                                                 | Role                                                                                                                                                                     |
| AirHARP<br>HSRL-2<br>PICARD<br>PRISM<br>RSP<br>SPEX Airborne<br>Facility inst.<br>LARGE<br>LI-Neph.<br>Ship based obs.<br>HyperNAV | ER-2<br>ER-2<br>ER-2<br>ER-2<br>ER-2<br>ER-2<br>Twin Otter<br>Twin Otter<br>Twin Otter<br>Shearwater<br>Floats | PACE/HARP2 polarimetry proxy<br>Aerosol/cloud/ocean lidar<br>PACE/OCI spectrometer proxy<br>PACE/OCI spectrometer proxy<br>Multi-angle polarimeter reference<br>PACE/SPEXone polarimetry proxy<br>Aerosol/cloud in situ instruments<br>Aerosol/cloud in situ instruments<br>Aerosol phase functions<br>Ocean optics<br>Water leaving radiance | WALES<br>specMACS                                                | HALO<br>HALO                         | Aerosol/cloud lidar<br>Nadir VIS/NIR/SWIR cameras                                                  | LNG<br>Microphysics<br>NP-II                                    | ATR-42<br>ATR-42<br>ATR-42                               | Aerosol/cloud lidar<br>Aerosol/cloud in situ instruments<br>Phase functions                                                                                              |
|                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                               | HAMP Radar<br>HAMP<br>Radiometer<br>SMART<br>VELOX<br>Dronsondes | HALO<br>HALO<br>HALO<br>HALO         | Cloud radar 35.5 Ghz, nadir<br>MW Radiometer<br>UV-SWIR spectral irradiance, radiance<br>IR camera | RASTA<br>BASTA<br>AWALI<br>CLIMAT<br>Pyrg/Pyranometer<br>Camera | ATR-42<br>ATR-42<br>ATR-42<br>ATR-42<br>ATR-42<br>ATR-42 | W-band pulsed Doppler cloud radar<br>Horizontal bistatic radar<br>Horizontal lidar<br>IR irradiance, sea surface temp.<br>Broadband up/down radiative flux<br>VIS camera |



| Validation objectives               | ID | Measurement objectives                                           | Importance, w |
|-------------------------------------|----|------------------------------------------------------------------|---------------|
|                                     | Α  | Land surface parameters                                          | 2             |
|                                     | В  | Ocean radiometric parameters                                     | 2             |
| 1. Validate new retrieval           | С  | Aerosol parameters over the ocean                                | 10            |
| properties                          | D  | Aerosol parameters over land                                     | 10            |
|                                     | E  | Cloud parameters                                                 | 10            |
|                                     | F  | Ocean surface parameters                                         | 1             |
| 2. Assess spatial and               | Α  | Cloud parameters                                                 | 8             |
| temporal scale impact on validation | В  | Aerosol parameters                                               | 8             |
| 2 Validato in a narrow              | Α  | Aerosol parameters over the ocean                                | 10            |
| 5. valuate in a harrow              | В  | Aerosol parameters over land                                     | 10            |
| swath                               | С  | Cloud parameters                                                 | 5             |
|                                     | Α  | Validate large reflectances                                      | 3             |
| 4. Validate radiometric             | В  | Validate large reflectances with high polarization               | 3             |
| properties                          | с  | Validate large reflectances with low polarization                | 3             |
| • •                                 | D  | Overfly vicarious calibration sites                              | 3             |
| 5. Target specific                  | A  | Aerosol over ocean retrieval geometry dependence                 | 2             |
| geometries, season, and             | В  | Aerosol over land retrieval geometry dependence                  | 2             |
| time of day                         | С  | Cloud property retrieval geometry dependence                     | 2             |
|                                     | Α  | High aerosol loads over land                                     | 4             |
|                                     | В  | High aerosol loads over ocean                                    | 4             |
|                                     | С  | Multiple aerosol layers                                          | 1             |
|                                     | D  | Aerosol under thin cirrus                                        | 2             |
|                                     | E  | Aerosol above liquid phase cloud                                 | 4             |
| 6. Focus on specific                | F  | Broken clouds with complex structure                             | 4             |
| processes or phenomena              | G  | Dust aerosols over ocean                                         | 1             |
|                                     | н  | Aerosol and ocean parameters over turbid waters                  | 2             |
|                                     | I  | Aerosol and ocean parameters over biologically productive waters | 5             |
|                                     | J  | Aerosol and ocean parameters with and without reflected sunglint | 1             |
|                                     | к  | Smoke aerosols over ocean                                        | 1             |

- EarthCARE validation campaigns can be useful for PACE validation
- Applies for aerosol products and especially cloud products
- EarthCARE campaigns do not have the equivalent of PACE proxy instruments, so validation would require observations during satellite overpass



Satellite overpasses on first planned day of PACE-PAX

PACE overpass at 13:31 PDT

EarthCARE overpass at 15:47 PDT







Same day, ORCHESTRA region

PACE overpass at 12:54 CVT (East) 14:32 CVT (West)

EarthCARE overpass at 13:11 CVT (East) 15:42 CVT (West)



## Conclusions

- PACE-PAX will be in September, 2024 in California. Two aircraft, a ship and other ground assets will be used to validate PACE's ocean, aerosol and cloud products.
- PACE and EarthCARE will have once daily coincident daytime observations in the Southern Hemisphere. These observations can be used for product intercomparison and validation.
- PACE-PAX and ORCHESTRA will have both PACE and EarthCARE satellite overpasses which will be valuable for validation of products from both missions. Coordination of activities will be mutually beneficial.



# Thank you!

Kirk Knobelspiesse, PACE-PAX Mission Scientist, Kirk.Knobelspiesse@nasa.gov Brian Cairns, PACE-PAX Deputy Mission Scientist, Brian.Cairns@nasa.gov Ivona Cetinić, PACE-PAX Deputy Mission Scientist, Ivona.cetinic@nasa.gov



Interested in learning more about PACE? See our Community of Practice in the Applications section here: pace.gsfc.nasa.gov



## Backup slides

At-launch PACE/OCI aerosol algorithms include heritage Deep Blue and Dark Target

- **Deep Blue** (DB) and **Dark Target** (DT) implemented
  - Based on VIIRS versions of code
  - Output at full (~1 km) resolution
  - Available with <1 day latency from spring 2024
- Post-launch candidates:

PACE-PA

- Remer *et al.* "Unified Aerosol Algorithm" combining DB, DT, and OMAERUV, code delivered, in testing
- Lyapustin et al. MAIAC, code to be delivered

VIIRS 04 Mar 2020



AE

low high



### We have in-house polarimetric retrievals implemented...

60°N

60°5

- Lead: Meng Gao
- Joint aerosol and ocean retrieval
- Fast neural network radiative transfer forward model

FastMAPOL

- Reasonable pixel-level uncertainty estimates for all quantities
- Validated with AirHARP and synthetic global HARP2 data
- Updates for spheroidal dust and land surfaces in the works



Retrievals (AOD 550nm)

#### Main products

Complex refractive index (fine/coarse) 0.4 Aerosol effective radius & variance Layer height AOD SSA Wind speed 0.05 Chlorophyll a 0.03 Research products 0.02 Multi-angle cloud 0.01 mask Multi-angle water leaving signal

120°E



## In-Situ Aerosol Retrieval Algorithm (ISARA)

|          | Instrument                                      |
|----------|-------------------------------------------------|
|          | Navigation                                      |
| Its      | Meteorology                                     |
| len      | Wind                                            |
| nm       | Ultra-Fine 3025A particle counter               |
| str      | Magic200 CPC particle counter                   |
| in       | TSI Scattering Nephelometer                     |
| lity     | Particle soot absorption photometer (PSAP)      |
| aci      | PMS PCASP                                       |
| <b>L</b> | DMT Cloud Imaging Probe (CIP)                   |
|          | DMT Cloud and Aerosol Spectrometer (CAS)        |
|          | DMT Hotwire Liquid Water Content (LWC)          |
|          | DMT Ultra-High Sensitivity Aerosol Spectrometer |
| Щ        | TSI-3321 Aerodynamic Particle Sizer (APS)       |
| ARG      | TSI-3563 Scattering Nephelometer, Dry           |
|          | TSI-3563 Scattering Nephelometer, Humidified    |
|          | Aerodyne CAPS-PM <sub>SSA</sub> at RH < 40%     |
| NOAA     | Laser Imaging Nephelometer (LiNeph)             |



Validation relevant aerosol and cloud parameters

**Snorre Stamnes, Joe Schlosser** 

## High Spectral Resolution Lidar (HSRL-2) products

John Hair, Taylor Shingler, Brian Collister and others

#### **Atmospheric products**

PACE-P



| Parameter                                | Wavelength (nm) | Approximate Precision                 | Horizontal<br>Resolution | Vertical Resolution |
|------------------------------------------|-----------------|---------------------------------------|--------------------------|---------------------|
| Aerosol Backscatter                      | 355/532/1064    | 0.2 Mm <sup>-1</sup> sr <sup>-1</sup> | 2 km                     | 30 m                |
| Aerosol Extinction                       | 355/532         | 0.01 km <sup>-1</sup>                 | 12 km                    | 300 m               |
| Depolarization                           | 355/532/1064    | 0.01                                  | 2 km                     | 30 m                |
| Aerosol Optical Depth                    | 355/532         | 0.01                                  | 12 km                    |                     |
| Aerosol Type (e.g., marine, dust, smoke) | N/A             | Qualitative                           | 12 km                    | 300 m               |
| Cloud Top Height (upper layer)           | 532             | 15 m                                  | 100 m                    | 15 m                |

#### **New!** Ocean products

| Parameter                  | Wavelength (nm) | Approximate Precision                 | Horizontal<br>Resolution | Vertical Resolution |
|----------------------------|-----------------|---------------------------------------|--------------------------|---------------------|
| Particulate Backscatter    | 355/532         | 2E-7 m <sup>-1</sup> sr <sup>-1</sup> | 2 km                     | 1 m                 |
| Extinction                 | 355/532         | 1E-5 m <sup>-1</sup>                  | 2 km                     | 5 m                 |
| Remote Sensing Reflectance | 355/532         | *1E-6 sr <sup>-1</sup>                | 2 km                     | N/A                 |

\*estimate based on propagation of errors from backscatter and extinction above



## Meteorological forecasting and flight planning

- Team lead by Rei Ueyama, NASA Ames Research Center
- Flight planning by Samuel LeBlanc
- Additional support from NASA GMAO and for geostationary datasets



https://bocachica.arc.nasa.gov/PACE-PAX/





## Project management Earth Science Project Office (ESPO) at NASA Ames



ESPO is a group of success-oriented individuals providing a long history of outstanding field project management for NASA's Science Mission Directorate. We provide support in all facets of field project management.

ESPO oversees mission planning, including but not limited to conducting site visits to potential deployment sites, working with project teams to plan the details of the field operations, and setting up deployment locations.



<u>ESPO Responsibilities:</u>
 Management – Schedule, Planning, Budget, Reviews, Coordination
 Travel Requirements – Site Surveys, Deployment Operations, Science Meetings
 Logistics – Operations Website, List Serves, Lodging, Transportation, Shipping
 Facilities – Setup Lab/Office/Hangar, Rentals, Badging/Access, Ground Sites
 Mission Supplies – Office Supplies, Printers, Gases/Cryogens
 Communications – Network, Phone
 Mission Closeout – Contracts, Accounts
 External Support – PAO

#### **Sommer Nicholas and Erin Czech**



https://espo.nasa.gov /pace-pax

## Data Management Gao Chen and Michael Shook at NASA Langley

Airborne Science Data for Atmospheric Composition

#### Support during ongoing campaign

- Similar to ACEPOL data repository at www-air.larc.nasa.gov
- Team file sharing capability
- ICARTT file naming convention or CF compliant netCDF files
- Script-based batch upload and download option available via fixed IPs
- File scanning to enhance F.A.I.R.ness

Later migration of data to long term DAAC (archive) TBD

Overall paper to Earth System Science Data or similar









## EarthCARE and MetOpSG-A vs PACE: Collocation Analysis

Montserrat Pinol Sole ESTEC / EOP-PES 24/Oct/2023 Ref. EOPPES-PTN-068 Issue 1

ESA UNCLASSIFIED - For ESA Official Use Only



### **Orbit Characteristics**



| Satellite (LEO) | Repeat Cycle [days]/<br>Cycle Length [orbits] | Avg. Geodetic<br>Altitude [km] | MLST at ANX [h] | Inclination [deg] |
|-----------------|-----------------------------------------------|--------------------------------|-----------------|-------------------|
| EarthCARE       | 22/325                                        | 408.3                          | 14:00           | 97.03             |
| PACE            | 11/161                                        | 690.6                          | 13:00           | 98.11             |
| Metop-SG-A      | 29/412                                        | 832.2                          | 21:30           | 98.7              |



- Similar MLST for PACE and EarthCARE → collocations distributed geographically in regions other than polar regions
- Large MLST difference between PACE and MetOpSG-A
   → collocations distributed geographically in polar regions
- PACE is ~ 280 km higher than EarthCARE → satellites
   overtake each other after 1.08 days
- Metop-SG-A is ~ 140 km higher than PACE  $\rightarrow$  satellites overtake each other after 2.3 days



| Satellite (LEO) | Instrument   | Field-of-View [deg] | Swath Width [km] |
|-----------------|--------------|---------------------|------------------|
| EarthCARE       | Ground-Track | Nadir               | -                |
|                 |              |                     |                  |
| Satellite (LEO) | Instrument   | Field-of-View [deg] | Swath Width [km] |
| PACE            | Ground-Track | Nadir               | -                |
|                 | OCI          | +/-56.0             | ~ 2100           |
|                 | HARP2        | +/-47.0             | ~ 1500           |
|                 | SPEXone      | +/-4.314            | ~ 100            |

| Satellite (LEO) | Instrument | Field-of-View [deg] | Swath Width [km] |
|-----------------|------------|---------------------|------------------|
| MetOp-SG-A      | 3MI        | Nadir               | -                |

→ THE EUROPEAN SPACE AGENCY

#### ₩ 🕂 🛨 • \* 0

### **PACE Instrument Swath Visualisation**





#### \*

→ THE EUROPEAN SPACE AGENCY

## **EARTHCARE-PACE:** Relative geometry



• Satellites overtake each other with a base period of 1.08 days



The combined cycle of EarthCARE and PACE would be 25x11=275 days

#### 🚍 🔜 📕 🚝 🥅 🚍 📲 📕 🚝 📕 📕 🚍 📲 🚝 🚝 🔤 🔤 🚳 🎽 📲 👫 👫 👫 👫 🛃 🔤 🔤 👘 🔸 THE EUROPEAN SPACE AGENCY

### **EARTHCARE-PACE : Collocation < 5 minutes**

----

±





+

40

## EarthCARE-PACE: Collocation Opportunities Ground-Tracks Only



- A time interval of 30 days has been simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)
- The collocations below 5 minutes take place once per base period, around +/-42 deg latitude
- A time interval of 30 days has been simulated (01-Sep to 01-Oct).



→ THE EUROPEAN SPACE AGENCY

### EarthCARE-PACE: Collocation Opportunities EC Ground-Tracks vs PACE SPEXone



- A time interval of 30 days has been simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)
- The collocations below 5 minutes take place once per base period, around +/-42 deg latitude
- A time interval of 30 days has been simulated (01-Sep to 01-Oct).



## EarthCARE-PACE: Collocation Opportunities EC Ground-Track vs PACE HARP2



- A time interval of 30 days has been simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)
- The collocations below 5 minutes take place once per base period, around [20,60] and [-60,-20] deg latitude bands
- A time interval of 30 days has been simulated (01-Sep to 01-Oct).



## EarthCARE-PACE: Collocation Opportunities EC Ground-Track vs PACE OCI



- A time interval of 30 days has been simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)
- The collocations below 5 minutes take place once per base period, around [10,80] and [-80,-10] deg latitude bands
- A time interval of 30 days has been simulated (01-Sep to 01-Oct).



→ THE EUROPEAN SPACE AGENCY

## **MetOpSG-A vs PACE: Relative geometry**



• Satellites overtake each other with a base period of 2.3 days



• The combined cycle of EarthCARE and PACE would be 29x11 = 319 days

#### 🚍 🔜 📕 🚝 🚃 🚍 📲 📕 🚝 📕 📕 🔚 🚍 👬 🚍 🛶 🚳 🛌 📲 📲 🖬 🛃 💏 🛨 📰 🔤 👘 🔸 The European space agency

# MetOp-SG 3MI vs PACE SPEXone



- A time interval of 30 days has been simulated (01-Sep to 01-Oct).
- Collocation opportunities within 60 minutes (purple), 15 minutes (blue) and 5 minutes (red)
- The collocations below 5 minutes take place once per base period, around polar regions
- A time interval of 30 days has been simulated (01-Sep to 01-Oct).

