Large-scale ice velocity mapping in Antarctica: status, advances and opportunities

Benjamin J. Wallis, Anna E. Hogg, Ross A.W. Slater Institute for Climate and Atmospheric Science University of Leeds, UK

Part 1 Satellite Ice Dynamics at Leeds

Comment

Why monitor Antarctic Ice Sheet dynamics?

- Ice sheet mass loss is a major contributor to global sea-level rise.
- Ice dynamics constitute 90% of Antarctica's sea-level rise contribution¹.
- Knowledge of ice dynamics is crucial to developing our understanding of icesheet processes, including tipping elements.
- Satellite data is the only way to achieve monitoring on the scale our challenges demand.

(Reproduced from Slater et al. 2020)

Routine ice velocity processing for Antarctica

- Sentinel-1 now offers a decade of regular SAR acquisitions for Antarctica.
- At Leeds we process all available frames to measure ice velocity.
- We implement our processing chain using *GAMMA* – see Davison et al. 2023.
- Currently, we process 322 new scenes every 12 days, totaling 114,075 pairs of 6- & 12-day separated images.

My work – The Antarctic Peninsula

- From 1992 to 2020 the Antarctic Peninsula accounted for **14%** of Antarctica's ice mass loss¹.
- In the remote sensing era: major ice shelf collapses $2,3$, ice flow acceleration^{4,5} and glacier retreat⁶.
- The AP is a unique venue to study ice dynamics in Antarctica.
- Observations from the AP have been influential to how we think about Antarctica's future.

¹Otosaka et al., 2023, ²Rott et al., 1996, ³Rack & Rott, 2004, 4Rignot et al., 2004, 5Wuite et al. 2015, 6Cook et al. 2016

04/09/2024

Finding seasonal ice speed variations on the AP

- Observations of ice speed on the west AP coast showed seasonal speed-up in the summer.
- A long and dense time-series of measurements was essential to observing these variations.
- We used a Bayesian recursive smoother to filter our ice speed measurements.
- We find that these patterns are widespread on the AP's west coast, with an average speed-up of **12.4 ± 4.2 %** up to a maximum of **22.3 ± 3.2 %.**

Finding seasonal ice speed variations on the AP

- Observations of ice speed on the west AP coast showed seasonal speed-up in the summer.
- A long and dense time-series of measurements was essential to observing these variations.
- We used a Bayesian recursive smoother to filter our ice speed measurements.
- We find that these patterns are widespread on the AP's west coast, with an average speed-up of **12.4 ± 4.2 %** up to a maximum of **22.3 ± 3.2 %.**

UNIVERSITY OF LEEDS

Increased Antarctic Peninsula ice discharge

- A case-study of Cadman Glacier showed an acceleration of 1.47 km/yr, retreat of 8 km and ice discharge increase of 28 %¹.
- We followed this up with a study of ice discharge across the whole west AP and found an increase of 7.4 % since 2017².
- These changes coincided with a period of anonymously warm ocean temperature.

Increased Antarctic Peninsula ice discharge

- A case -study of Cadman Glacier showed an acceleration of 1.47 km/yr, retreat of 8 km and ice discharge increase of 28 %¹.
- We followed this up with a study of ice discharge across the whole west AP and found an increase of 7.4 % since 2017².
- These changes coincided with a period of anonymously warm ocean temperature.

Increased Antarctic Peninsula ice discharge

- A case-study of Cadman Glacier showed an acceleration of 1.47 km/yr, retreat of 8 km and ice discharge increase of 28 %¹.
- We followed this up with a study of ice discharge across the whole west AP and found an increase of 7.4 % since 2017².
- These changes coincided with a period of anonymously warm ocean temperature.

UNIVERSITY OF LEEDS

Not just the AP – Getting clever with big data

- Routine SAR acquisitions and ice velocity processing create vast volumes of data – **this is a challenge!**
- Smart curation allows us to make our data as useable and easy to work with as possible.
- Organising our data using **Zarr** data cubes allows fast read/write in the time dimension.
- Parallelising processing using **dask** maximises our HPC resources.

Big data processing facilitates more science

- Having pre-processed ice velocity data has enabled us to do exciting sideprojects, such as:
- Producing an updated grounding line dataset for the Antarctic Peninsula¹.
- Supporting modelling studies, like a recent study of the Larsen-B embayment².
- Routine ice velocity processing is a resource for innovation – it allows low input trials and faster science.

¹Wallis et al. 2024, ²Surawy-Stepney et al. 2024.

04/09/2024

Big data processing facilitates more science

- Having pre-processed ice velocity data has enabled us to do exciting sideprojects, such as:
- Producing an updated grounding line dataset for the Antarctic Peninsula¹.
- Supporting modelling studies, like a recent study of the Larsen-B embayment².
- Routine ice velocity processing is a resource for innovation – it allows low input trials and faster science.

Part 2 Challenges

Improving ice-velocity errors and uncertainties

- A range approaches are used to provide an uncertainty for ice velocity measurements.
- The many sources of error in velocity measurements are complex: geolocation, coregistration, out of date DEMs, tidal motion, offset tracking, surface melt, etc.
- Few GPS measurements to validate against, particularly in Antarctica.
- **Is there scope to perform an IV intercomparison exercise between independent satellite datasets and all accessible GPS measurements?**

Uncertainties matter – they'll be used for important things

- New generations of global sea-level rise projections will use calibrations from observational data.
- The most powerful statistical techniques require an uncertainty associated with observations.
- **There's a chain of uncertainties directly from our observations to projections of SLR used by policymakers.**

$P(SLR|Obvs) \propto P(SLR)P(Obvs|SLR)$

(Reproduced from Bevan et al. 2023)

Other datasets contribute to mass balance uncertainties:

- **Ice thickness** in the AP this is by far the biggest source of error in any calculations of mass balance^{1,2}.
- **GL position** varying flux-gate location changes discharge by 4.5 %². Also significant for historic GL measurements which may not have accounted for tidal migration^{3,4}.
- **SMB models** we know there are significant differences in these over Antarctica⁵.

UNIVERSITY OF LEEDS

¹Shahateet et al. 2023, ²Davison et al. 2024, ³Freer et al. 2023, 4Rignot et al. 2024, 5Mottram et al. 2021.

Part 3 Outlook

The Importance of Sentinel-1

- Sentinel-1 remains the workhorse of ice dynamics monitoring in Antarctica.
- We have a decade of continuous measurements of the Antarctic margin.
- Maintaining this unparalleled continuous record is **essential.**
- Capability was reduced with the loss of 1B. E.g., grounding line position measurements.
- Resuming 6-day repeats should be a priority.

The possibilities of multi-frequency SAR

- Upcoming missions will enhance ice sheet dynamics observations.
- Commercial X-band offers the opportunity for targeted studies in highimpact areas – e.g. The Amundsen Sea.
- NISAR, ROSE-L and Biomass will add routine, L, S and P band measurements in Antarctica.
- Combining frequencies can address measurement uncertainties, like the impact of surface melt on the scattering horizon.

(Reproduced from Macchiarulo et al, 2023)

Towards persistent monitoring of ice-sheet dynamics

- Modern satellite observations provide unprecedented capability to monitor the Earth's ice sheets.
- With Sentinel-1 we are generating a continuous record of ice sheet velocity and discharge at 12-day resolution.
- **Other key parameters are joining**, enabled by the power of AI: grounding lines, calving fronts, crevassing and damage.

Summary and Recommendations

- Sentinel-1 has given us an unprecedented observational record.
- This has enabled important science, but there's still more to be done.
- Our observations and uncertainties directly impact future sea-level rise projections – so let's keep improving these.
- Multi-frequency SAR observations should be closely coordinated to improve observations of ice dynamics.
- Efforts to address other data gaps, like ice thickness, are also essential.

UNIVERSITY OF LE

