

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

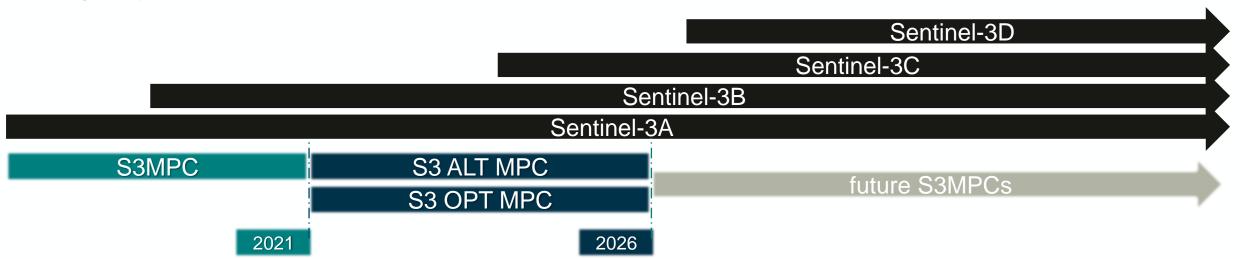
18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Latest improvement and Performance assessment of the Sentinel-3A STM Microwave Radiometer

ML. Denneulin, M. Mrad, G. Jettou, J. Aublanc (CLS)

P. Féménias (ESA)

ESA UNCLASSIFIED - For ESA Official L



18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Sentinel-3 Mission Performance Clusters

See G. Jettou talk

A Long story

In the Copernicus Ground Segment (CGS) the Mission Performance Cluster (MPC) main role is:

- to characterize the instrument with the aim to detect anomalies or degradation that may impact the data performance
- to ensure that the Copernicus user level data are in line with their specification in terms of characteristics, performance and accuracy
- To perform explorative activities aiming at improving the product characteristics or expanding the product family to stay on top of the Copernicus Services evolving expectations.

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Copernicus Altimetry Service (COPAS) for the Sentinel-3 mission

Regular monitoring of Sentinel-3 Surface Topography Mission (STM) performance over oceans Guaranteed from beginning of S3A mission to present by two distinct projects

See F. Nencioli talk

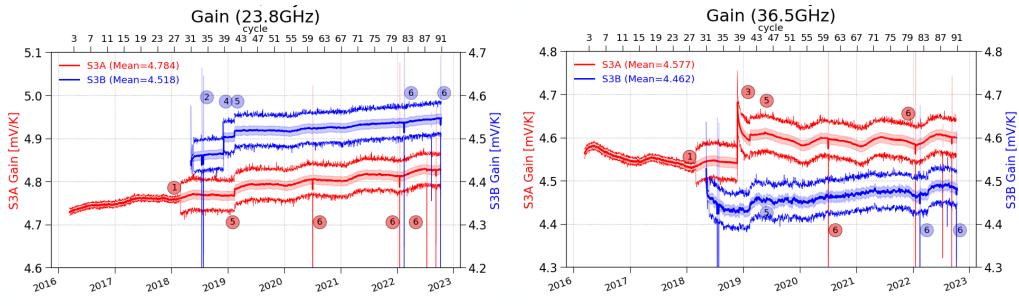
> S3-MPC (until December 2021)

➤ COPAS (from May 2022)

The monitoring activities in both projects includes:

- Calibration and characterisation of S3 altimeter (SRAL) and microwave radiometer (MWR) performance
- Validation of the ground processing and final products
- Assessment of the overall mission performance
- Support for the continuous improvement of the S-3 STM performance

PROGRAMME OF THE EUROPEAN UNION



MWR Monitoring

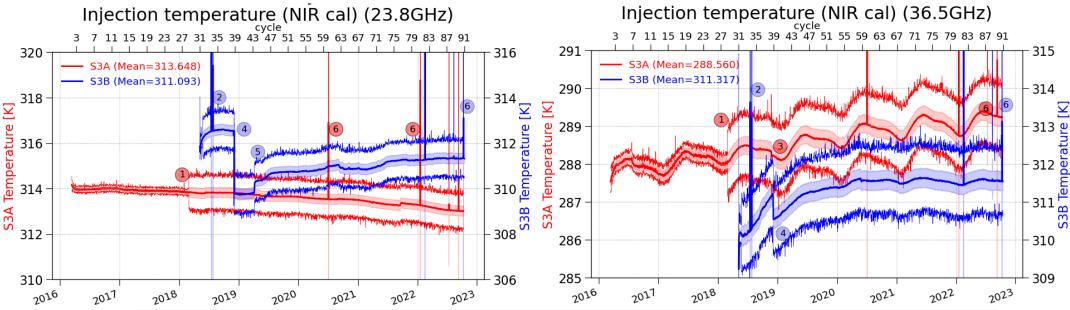
18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

MPC data

Comments

- Update of calibration timeline 1st March 2018 → increase of Level 2 data availability
- 2 Sky and Moon maneuvers
- (3) @36.5GHz RFI with KREMS radar
- 4 Update of MWR characterisation parameters file (intercalibration of brightness temperatures wrt S3A)
- 55 S3A & S3B: IPF update (correction of gain computation) (negligeable impact on the BT.)
- 66 special operation for OLCI

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

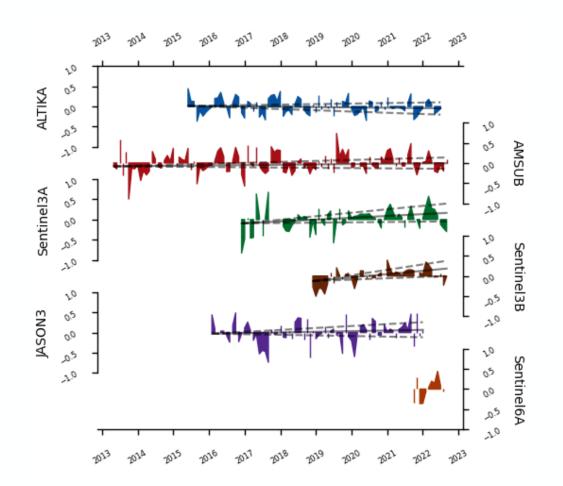


MWR Monitoring

Injection temperature (NIR cal) (36.5GHz)

Comments

- Update of calibration timeline 1st March 2018 → increase of Level 2 data availability
- Sky and Moon maneuvers
- @36.5GHz RFI with KREMS radar
- Update of MWR characterisation parameters file (intercalibration of brightness temperatures wrt S3A)
- @23.8GHZ, under investigations
- **(6)(6)** special operation for OLCI



Vicarious calibration

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Coldest ocean temperatures

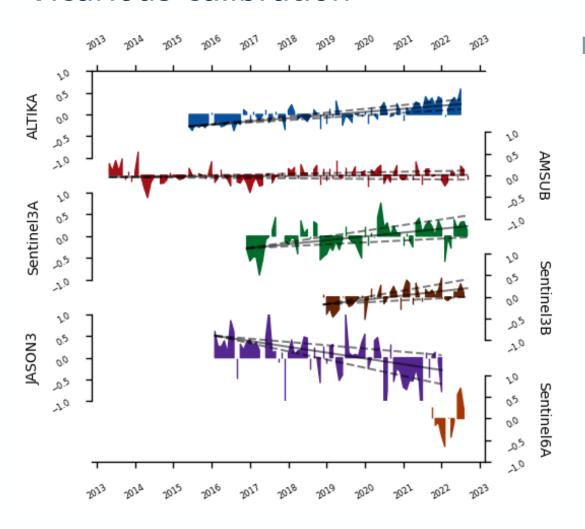
MPC data

Residuals

Obtained by removal of seasonal signal, estimation of the slope + 95% confidence interval

Removal of seasonal signal reduces the confidence interval Low level of noise (residuals close to MWR sensivities)

Trend (K/yr)	AltiKa	AMSU	S3A	S3B	J3	S6A
23.8GHz	-0.01 (-0.03/0.01)	0.01 (-0.01/0.02)	0.05 (0.01/0.09)	0.08 (0.03/0.13)	0.02 (-0.01/0.05)	not estimated



Vicarious calibration

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Coldest ocean temperatures

MPC data

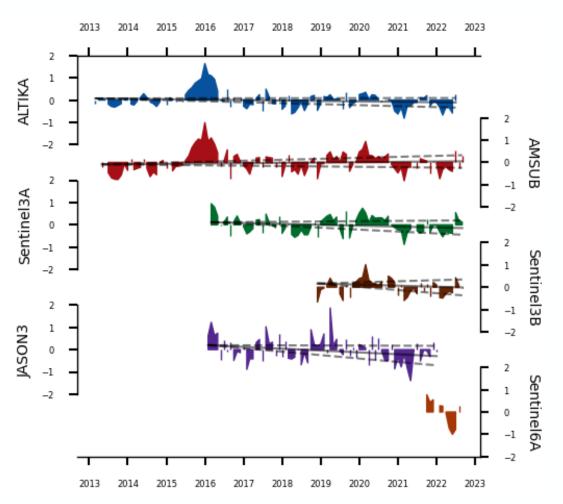
Residuals

Obtained by removal of seasonal signal, estimation of the slope + 95% confidence interval

Removal of seasonal signal reduces the confidence interval Low level of noise (residuals close to MWR sensivities)

Trend (K/yr)	AltiKa	AMSU	S3A	S3B	J3	S6A	
iq. Wateı Chan	0.07 (0.06/0.09)	0.01 (-0.01/0.02)	0.09 (0.04/0.13)	0.10 (0.05/0.15)	-0.13 (-0.19/-0.08)	not estimated	

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



MPC

data

Vicarious calibration

Amazon forest hottest temperatures

Obtained by removal of seasonal signal, estimation of the Residuals slope + 95% confidence interval

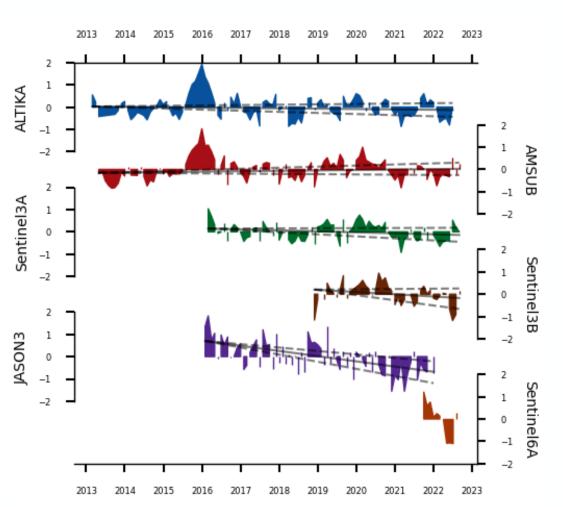
> Clear signature of El Nino (2016) (anomaly of water vapor over Amazon forest)

Residuals follow same patterns

Trend (K/yr)	AltiKa	AMSU	S3A	S3B	J3	S6A
23.8GHz	-0.02 (-0.04/0.00)	0.01 (-0.02/0.04)	-0.04 (-0.09/0.01)	-0.05 (-0.14/0.05)	-0.08 (-0.15/-0.01)	not estimated

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Residuals



MPC

data

Vicarious calibration

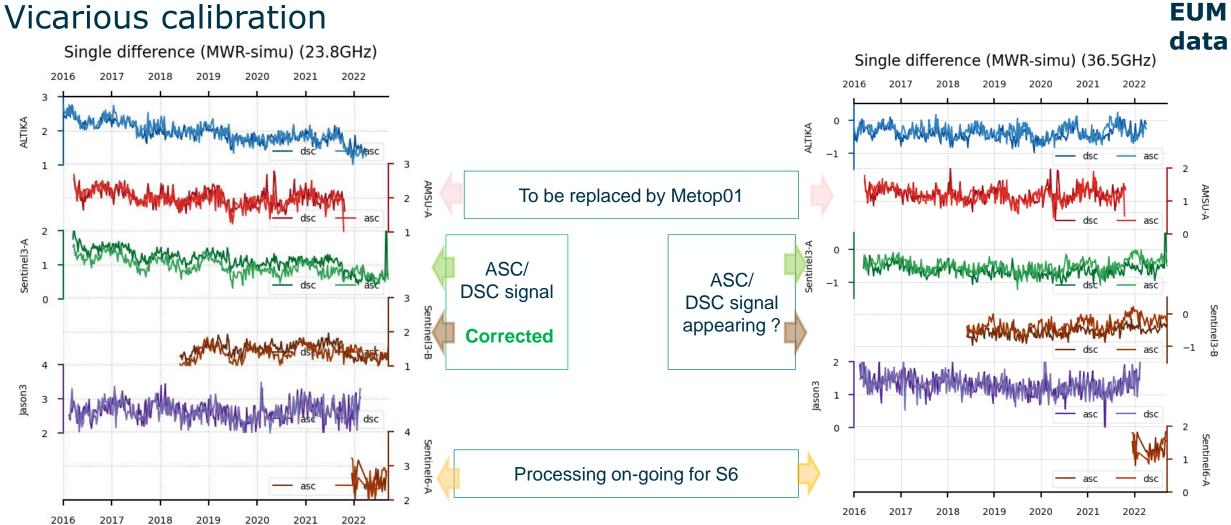
Amazon forest hottest temperatures

Obtained by removal of seasonal signal, estimation of the slope + 95% confidence interval

Clear signature of El Nino (2016, 20) (anomaly of water vapor over Amazon forest)

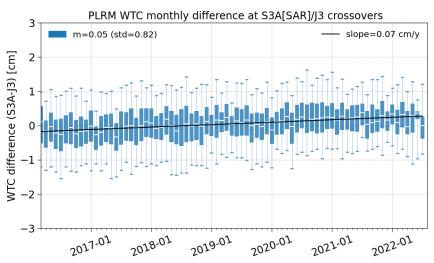
Trend (K/yr)	AltiKa	AMSU	S3A	S3B	J3	S6A
iq. Wateı Chan	-0.02 (-0.05/0.02)	0.02 (-0.01/0.05)	-0.04 (-0.09/0.01)	-0.10 (-0.23/0.01)	-0.23 (-0.32/-0.15)	not estimated

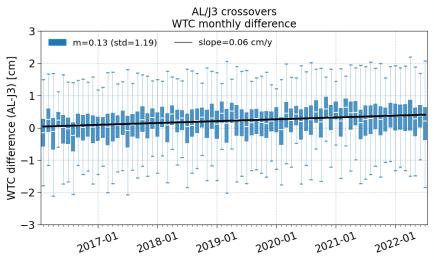
PROGRAMME OF THE EUROPEAN UNION

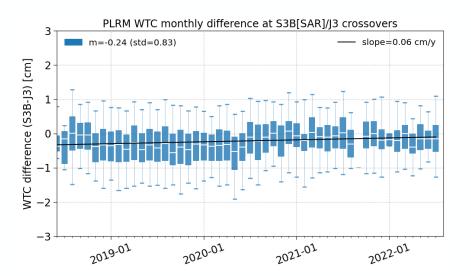


18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy







Crossover points

GDR data for J3 and AltiKa

NTC data for S3A/S3B

- Same drift wrt J3 is observed for three missions
- Unlikely than 3 instruments would drift similarly
- No drift assigned to Sentinel-3

Instrument monitoring

> Both instruments are in good health

Stability of Sentinel 3A MWR assessed

From brightness temperatures using vicarious calibrations

- > No drift identified so far
- → 36,5GHz to be analysed

From crossover points

→ Same drift wrt J3 for S3A/S3B/AL

Coldest ocean points

~5 years	S3A	S3B
23.8 (K/yr)	0.05 (0.01 / 0.09)	0,08 (0,03/0,13)
Liq. wat/. (K/yr)	0.09 (0.04 / 0.13)	0,10 (0,05/0,15)

Amazon forest

~5 years	S3A	S3B
23.8 (K/yr)	-0.04 (-0.09 / 0.01)	-0,05 (-0,14/0,05)
Liq. wat. (K/yr)	-0.04 (-0.09/0.01)	-0,10 (-0,23/0,01)

