Melting ice shelves and coastal impacts

Tore Hattermann Norwegian Polar Institute

The Southern Ocean centric view!

A. Spilhaus' projection of the world oceans reveal the centrality of the Southern Ocean.

A global thermohaline circulation connects all basins, with upper-layer flow in red and lower-layer flow in blue.

From Meredith (2019)

The Antarctic hydrological cycle and sea level

cannot rule out 5 m Sea Level Rise by 2150 15 m Sea Level Rise by 2300

Society could not accept this uncertainty!

IPCC AR6 to policymakers: **Antarctic Ice Sheet Projections**

Serroussi et al. (2020)

IPCC AR6 to policymakers:

cannot rule out 5 m Sea Level Rise by 2150 15 m Sea Level Rise by 2300

Society could not accept this uncertainty!

How to help?

mass loss *"...the need for more physics and less* mass gain *rates at interannual and decadal calibration in the parameterizations and for more observations of hydrographic properties and melt timescales." (Edwards et al. 2020)*

Antarctic Ice Sheet Projections

Fill the Southern Ocean data desert!

Challenges for assessing ice shelf melting

- 1. Heat transport from deep ocean to coast
	- «slope front» dynamics
	- heat loss and water mass transformation on the shelf
	- coupling to large scale climate
- 2. Sub-ice shelf processes
	- local circulations / tides
	- small scale topogrpahy / «meltchannels»
	- MISI & «grounding line problem»

Coastal observations are key!

Instrumented seals mapping coastal hydrography

Instrumented seals mapping coastal hydrography

Different processes dominate different shelf regimes

Sea ice production

increases salinity and drives full-depth convection on the shelf. **Ice shelf melting** causes further cooling and freshening.

cold, fresh warm, saline Depth Distance from coast

> **wind driven Ekman overturning** causes freshening on the shelf and **counteracting eddy overturning** regulates cross-shelf fluxes and thermocline depth.

Different processes dominate different shelf regimes

Sea ice production

increases salinity and drives full-depth convection on the shelf. **Ice shelf melting** causes further cooling and freshening.

Sea ice production

increases salinity and drives full-depth convection on the shelf. **Ice shelf melting** causes further cooling and freshening.

Glacial meltwater from East Antarctica may help drive warm water inflow to ice shelves in West Antarctica. From Matt Hoffman @LosAlamosNatLab at #WAISworksh

And they interact…

Hoffmann et al. 2024 https://doi.org/10.5194/tc-18-2917-2024

Different processessed and Supervections!

 $\mathbf b$

6000

Different processessed and Supervections!

"Warm" oceans eroding ice shelves from below

"Warm" oceans eroding ice shelves from below

"Warm" oceans eroding ice shelves from below

Increased warm inflow is associated with

- Stronger westerly winds around the continent (a)
- reduced sea ice (b)
- Weakened coastal current (Lauber et al. 2023) (c)

Reveraling large-scale patterns and teleconnections

Challenges for assessing ice shelf melting

- 1. Heat transport from deep ocean to coast
	- «slope front» dynamics
	- heat loss and water mass transformation on the shelf
	- coupling to large scale climate

2. Sub-ice shelf processes

- local circulations / tides
- small scale topogrpahy / «meltchannels»
- MISI & «grounding line problem»

Basic needs:

Bathymetry source

Fimbulisen: Nøst et al. 2004

Seismic reflection measurements were conducted at 183 stations covering most of the ice shelf.

EWS: Le Brocq et al. 2010

General (sub ice-shelf) bathymetry:

«All ice shelf areas within the red outline $[...]$ were then reinterpolated using kriging...»

P3: Improve sub-ice shelf bathymetry wherever possible

~50 water coulmn thickness beneath all other ice shelves but Fimbulisen, really?!

Bottom topography is urgently needed!

(and luckily there have been updates since 2010, but still not enough)

Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and from that melt rate.

- Time series of interannual, seasonal and sub-seasonal changes
- Validation of satellite products
- Detect coherent patterns from distributed observatories

P4: Extend the melt rate radar network around the continent

Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and from that melt rate.

- Time series of interannual, seasonal and sub-seasonal changes
- Validation of satellite products
- Detect coherent patterns from distributed observatories

P4: Extend the melt rate radar network around the continent

Yet another Fimbulisen example: M2 ApRES (*Lindbäck et al., in review*)

Dec

Oct

Satellite product sees more surface seasonality,

than melt

Observed ApRES data range

Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and from that melt rate.

- Time series of interannual, seasonal and sub-seasonal changes
- Validation of satellite products
- Detect coherent patterns from distributed observatories

Ideally paired with heat flux measurements beneath the ice

To improve basal melt parameterizations:

Ideally paired with heat flux measurements beneath the ice

Hattermann coal. in prep.

Concurret temperature and velocity profiles beneath the ice are crucial but do nearly not exist

P4: Extend

the melt

network

rate radar

around the

continent

To improve basal melt observations 3 3-EQN with suppresssion **parameterizations:** $\begin{bmatrix} 15.0 \end{bmatrix}$
ablation rate $\begin{bmatrix} \text{m/yr} \end{bmatrix}$ 3-EQN - observations regression - 3-EQN \overline{c} 2 -EQN $-$ 3-EQN $\mathbf{1}$ **RIS S** Log10 data counts thermal Stanton x10-4 Ω 2.0 0.3 12.5 1.5 10.0 0.2 1.0 20 observed $\times 10^4 C_d^{1/2}$ Γ_T 7.5 parameterized **RIS W** 0.1 0.5 5.0 10 **FRIS** 2.5 0.0 3.5 -1.9 5 3.0 suppression factor ablation rate [m/yr] -2.0 0.3 4 2.5 -2.1 3 2.0 0.2 $\begin{bmatrix} 15 \\ 10 \\ 5 \\ 5 \end{bmatrix}$ Speed $\begin{bmatrix} 16 \\ 10 \\ 5 \end{bmatrix}$ $\overline{2}$ 1.5 0.1 $\mathbf{1}$ 1.0

736800

737000

737200

737400

737600

Datenum

737800

738000

738200

 $\overline{0}$

10

 15

Hattermann et al. in prep.

5

 10

 $\overline{0}$

 0.5

free flow velocity [cm/s]

 $\overline{15}$

thermal driving [degC]

To improve basal melt parameterizations:

parameterized ablation rate [m/yr]

Hattermann et al. in prep.

InSync on melting ice shelves and coastal impacts

Suggested community pledges:

1: Leverage mapping of coastal hydrography and seasonality (Argo++)

2: Aim for a legacy of long-term observatories (think "SO-DBO")

3: Improve sub-ice shelf bathymetry wherever possible

4: Extend the ApRES melt rate radar network around the continent

Thank you!

Photo: J. Lauber