

Enabling SAR altimetric simulations in the Snow Microwave Radiative Transfer (SMRT) model

Ghislain Picard¹, Justin Murfit², Pierre Zeiger¹, Elena Zakharova³, Claude Duguay²

1 Université Grenoble Alpes, France 2 H2O Geomatrics, Waterloo, Canada 3 EOLA, Toulouse, France

·eesa

2015→ SMRT aimed to solve snow microstructure issues for passive microwaves

Snowpack description, volume scattering, stratification. Extensive validation.

SMRT has:

- simple and clear architecture
- modularity using plugins

SMRT has:

- simple and clear architecture
- modularity using plugins

Murfitt et al. 2023

11 12

Cluster

esa

2019 \rightarrow development and validation of a LRM altimeter RT solver (collab CLS)

1- Solve the time-dependent radiative transfer equation (vertical delay)

$$\frac{1}{c(\mathbf{r})} \frac{\partial}{\partial t} I'(\theta, \phi, \mathbf{r}, t) + \frac{\partial}{\partial s} I'(\theta, \phi, \mathbf{r}, t) = -\kappa_{e}(\mathbf{r}) I'(\theta, \phi, \mathbf{r}, t) + \frac{1}{4\pi} \int_{4\pi} P(\theta, \theta', \phi - \phi', \mathbf{r}) I'(\theta', \phi', \mathbf{r}, t) d\Omega'$$

2- Combine with the Brown 1977 model (horizontal delay)

Output : waveform

2019 \rightarrow development and validation of a LRM altimeter RT solver (collab CLS)

esa

2024 → SAMS-Cryo: Development of a SAR Altimetry Module in SMRT for Cryosphere Applications

1- Solve the time-dependent radiative transfer equation (vertical delay)

$$\frac{1}{c(\mathbf{r})} \frac{\partial}{\partial t} I'(\theta, \phi, \mathbf{r}, t) + \frac{\partial}{\partial s} I'(\theta, \phi, \mathbf{r}, t) = -\kappa_{e}(\mathbf{r}) I'(\theta, \phi, \mathbf{r}, t) + \frac{1}{4\pi} \int_{4\pi} P(\theta, \theta', \phi - \phi', \mathbf{r}) I'(\theta', \phi', \mathbf{r}, t) d\Omega'$$

2- Combine with the **?????** model (horizontal delay)

Output : delay Doppler map and multi-looked waveform

Review of a selection of delay Doppler models (ocean, ice-sheet, vegetation):

- Raney 1998
- Wingham et al. 2004
- Kurtz et al. 2014
- Halimi et al. 2014+2015
- Ray et al. 2015
- Boy et al. 2017
- Dinardo et al. 2018
- Wingham et al. 2018
- Buchhaupt et al. 2018
- Landy et al. 2019
- De Felice Proia et al. 2022 (I and II)
- Aublanc et al. in review

Review of a selection of delay Doppler models:

	Wingham et al. 2004	Kurtz et al. 2014	Halimi et al. 2014	Ray et al. 2015	Boy et al. 2017	Dinardo et al. 2018	Wingham et al. 2018	Buchhaupt et al. 2018	Landy et al. 2019	De Felice Proia et al. 2022 (I and II)	Aublanc et al. submitted
Starting point	Radar eq.	Radar eq.	Radar eq.	SAR processing+ Radar eq.	Radar eq.	Based on Ray et al. 2015	Radar eq.	Radar eq.	Based on Wingham et al. 2004	Radar eq.	Radar eq.
Full DEM	no	no	no	no	no	no	no	no	yes	yes	yes
Analytical- Numerical	AN	AN	AN	AN	N	А	AN	N	N	N	N
Antenna pattern	Circ. Gaussian	Ellip. Gaussian	Circ. Gaussian	Free function	Free function	Ellip. Gaussian	Ellip. Gaussian	Ellip. Gaussian	Ellip. Gaussian	Free function	Circ. Gaussian
Satellite pitch and roll	yes	no	no (see Halimi 2015)	yes	yes	yes	yes	yes	yes	no	
Terrain slope	yes	no	no	no		no	yes		DEM-based		DEM-based
Surface elevation distribution	Gaussian	Gaussian	Gaussian	skewed Gaussian	Free pdf (Gaussian)	Gaussian	Gaussian	Free pdf (Gaussian)	DEM-based	DEM-based	DEM-based
Surface backscatter	constant	Hagfors (1970) ?	constant	free function	constant	GO	constant	GO	IEM	AIEM	constant
Volume backscatter	exponential	no	no	no	no	no	no	no	Snow (Mie)	vegetation	no
point target response	Gaussian	sinc²	sinc²	Gaussian	sinc²	Gaussian	sinc²	sinc²	sinc²	Gaussian	sinc²
Azimuth point target response	Gaussian	FT Hamming	sinc²	Gaussian	Free function (sinc2)	Gaussian	FT rectangle or Hamming	sinc²	Ft Hamming	300 m rectangle ?	Iso-doppler. Rectangle ?
Main numerical step	3 convolution	1D integral + 2 convolutions	2 convolutions	3 x 1D integrals	2D integral + 3 convolutions	Special functions	1D integral	2D IFFT	x,y, t integration (heavy computational ly)	x,y integration	x,y integration + muti DDM
Speckle	yes	no	yes	no	no	no	yes	no	no	no	no
Interferometry	yes	no	no	no	no	no	yes	no	no	no	no
Correspondin retracker name		CS2WfF		SAMOSA		SAMOSA+		SINCS			AMPLI

sa

1. Starting point: decomposition of the problem in convolutions (or not):

t: time, f: doppler frequency

t: time, f: doppler frequency

The models differ in the way the FSIR and the SAR processing effect is taken into account

2. description of the surface height within the footprint

<u>Random surface with known pdf</u>

Common assumption: normal distribution

 \rightarrow amenable to analytical derivation

Digital Elevation Model (DEM)

Aublanc et al. in review

\rightarrow requires intensive numerical calculations

3. Many other differences

- Antenna shape: circular or elliptic
- Satellite mis-pointing (non-nadir)
- Terrain slope
- Shape of the pulse: gaussian or sinc²
- Backscatter model: constant, empirical or physical
- Volume backscatter
- Addition of speckle noise
- Used in a retracker.
- Analytical vs numerical derivations → computation time Pure analytical: Dinardo et al. 2018 The most numerically intensive: Landy et al. 2019

<u>Conclusion:</u> no model supersets all the other models

• Wingham et al. 2004

esa

- Halimi et al. 2014
- Ray et al. 2015
- Boy et al. 2017
- Dinardo et al. 2018
- Wingham et al. 2018
- Buchhaupt et al. 2018
- Landy et al. 2019

·eesa

Example of a delay Doppler map using Halimi et al. 2014:

Slant range correction

60

80

100

120

40

0.0

0

20

<u>After</u>

Example of differences between the models (preliminary results)

0 10 00 Doppler beam (#) 50 60 20 40 60 80 100 120 0 Gate (#) 1e-18 2.5 Relative power 1.5 1.0 0.5

60

80

100

120

0.0

0

20

40

<u>Dinardo et al. 2018</u>

<u>Landy et al. 2019</u>

esa

Surface vs Interface vs Volume contribution at different frequencies:

Same conclusion as the experimental work by Fredensborg Hansen et al. Submitted, EGUSphere

Conclusion & Perspectives

The SMRT framework is being extended !

SAR mode altimetry is enabled in SMRT:

- comparison between 8 existing delay Doppler models (DDM)
- easily extendable to other DDMs
- extendable to FFSAR, InSAR

The code is to be consolidated and will be released as open source in SMRT.

See also the online SMRT simulator (using the open source version): https://snow.univ-grenoble-alpes.fr/smrt-app/

Example of code:

1 layer of snow 1 layer of ice

Dinardo et al. 2018

```
sensor = cryosat2 sarm()
medium = make snowpack(
                    thickness=[0.2],
                    microstructure model="exponential",
                    corr length=300e-6, density=300,
                    surface=make interface("geometrical optics backscatter",
                                           mean square slope=0.02)
                    ) + \
         make ice column("firstyear",
                          thickness=[1],
                          temperature=270, salinity = 5 * PSU,
                          microstructure model="exponential",
                          corr length=100e-6, density=907)
medium.terrain info = TerrainInfo(sigma surface=0.2)
model = make model(emmodel("iba"),
                   rtsolver("nadir sarm altimetry", delay doppler model="dinardo18"))
result = model.run(sensor, medium)
```


The development of the radar equation

Flat surface reponse: FSR(t, f)

All models use the radar equation :

$$\operatorname{FSIR}(t') = \frac{\lambda^2}{(4\pi)^3 L_p} \int_{\mathbb{R}^+ \times [0, 2\pi[} \frac{\delta\left(t' - \frac{2r}{c}\right) G^2(\rho, \phi) \sigma^0}{r^4} \rho \, d\rho \, d\phi$$

But they differ in how this equation is calculated and implemented

