

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop

13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Validation of EarthCARE's aerosol model HETEAC with airborne in-situ observations

Moritz Haarig¹, Athena Floutsi¹, Holger Baars¹, Ulla Wandinger¹, Bernadett Weinzierl², Maximilian Dollner², Manuel Schöberl², Aryasree Sudharaj³, Konrad Kandler³, Rodanthi Mamouri⁴

1 Leibniz Institute for Tropospheric Research, Leipzig, Germany 3 Technische Universität Darmstadt, Darmstadt, Germany 2 Universität Wien, Aerosolphysik und Umweltphysik, Vienna, Austria

4 Eratosthenes Centre of Excellence, Limassol, Cyprus

HETEAC-Flex Validation

Cyprus – Complex aerosol mixtures

A-LIFE campaign

- April 2017
- ERC grant of B. Weinzierl
- Additional funding from **ESA for HETEAC Validation**

Aircraft in-situ

- size distr.
- refractive index

Remote sensing (ground) **Lidar** (**3** bsc. + **2** ext. + **2** depol.) Cloud radar

Radiation

TROPOS

355

532 1064

10 Cases for comparison

Coarse Non-Spherical (CNS)

 $D_{eff} = 3.88 \, \mu m$

 $m_R = 1.54$

 $m_1 = 0.006$

Coarse Spherical (CS)

 $D_{eff} = 3.88 \mu m$

 $m_R = 1.37$

 $n_1 = 4e-8$

Coarse mode

Fine mode

Optical properties for HETEAC-Flex do slightly differ from HETEAC

Rarely pure cases \rightarrow Complex mixtures in the Eastern Med.

Floutsi et al., 2023 Wandinger et al., 2023

Dust-dominated case 21 April 2017

Lidar Ratio (sr) **Depolarization Ratio**

 60 ± 9 25 ± 2%

 51 ± 8 28 ± 2%

Refractive Index

(Preliminary) Real part Imaginary part

HETEAC flex 1.534 ± 0.008 0.0057 ± 0.0013

0.0111 550 nm

in-situ

1.58

355 nm

370 nm

Non-dust-dominated case 11 April 2017

Optical Properties at 1.2 - 1.5 km height (355, 532 nm) Lidar Ratio (sr) 67 ± 13 66 ± 32 Depolarization Ratio $12 \pm 2\%$ $4.5 \pm 2\%$

Refractive Index Comparison (preliminary)

in situ: Offline analysis of filter samples at TU Darmstadt

Underestimation by HETEAC-Flex compared to filter sample analysis

HETEAC-Flex based on previous observations (maximum value of $m_R = 1.54$)

Preliminary comparison

Maybe more absorbing aerosol and polluted dust in Eastern Mediterranean?

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 - 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Effective Diameter Comparison

in situ: combination of several instruments (10 nm – 50 μm) of University of Vienna

- If a statistically significant solution was found:
 Good agreement for dust-dominated and non-dust-dominated cases
- Single events of large particles are not covered
- All cases represent (complex) mixtures of aerosol components
 - → Confidence that HETEAC-Flex provides good estimates of effective diameter

HETEAC-Flex

- is available for EarthCARE validation (Floutsi et al., 2023 in discussion)
- uses 4 aerosol components with prescribed properties
 to derive the microphysical properties of aerosol mixtures
- **effective diameter** is in good agreement with airborne in situ observations
- work on refractive index comparison is ongoing

Lidar + airborne in situ is important source of information to validate retrievals

- In-situ observations should cover full size range (≈10 nm 50 μm)
- A-LIFE provided good comparisons in complex mixtures
- We are open to include further data sets (lidar + in-situ), e.g., from ACTIVATE

We acknowledge funding from ESA for the A-CARE project (ESA RFP 3-15303/18/NL/CT/gp)