

YEAR ANNIVERSARY SCIENCE CONFERENCE

SWARM

Not Swarm - a reassessment of possibilities with a lower quality mission

Richard Holme and Isaac Salt University of Liverpool

DTU

Swarm 10 Year Anniversary & Science Conference 2024

Introduction

- What if we only had intensity data no directions
- Non-uniqueness (Backus effect)
- Feature of dayside data EEJ (Equatorial Electrojet)
- Intensity data are provided by the Chinese CSES satellite
- Focus on March 2019 a string of solar quiet days 21–26
 Vector data also available to compare
- Can we use the position of the EEJ as a sufficient constraint as to alleviate the Backus effect?
- Spoiler not well enough, but useful if only have intensity data

Finding the EEJ

- Dayside reduction in total field intensity along the EEJ
- Residual of the dayside data to Chaos model – Polynomial shape as spacecraft crosses over the EEJ
- Take position of crossing at the minimum

Comparison to Magnetic Equator

- The EEJ follows the magnetic equator
- Compare our measured points against equator
- Assume zero radial component at these points
- Additional constraint Resolves non-uniqueness

Convergence

- Plot difference in each coefficient to last iteration
- Measure of convergence
- Iteration number increasing from light to dark color (15 total)
- Data alone (Blue), EEJ (Green), Perfect Eq (Purple)
- Benefit to convergence is clear

Single day (2023/03/13)

String of 6 days (2019/03/21-26)

Field Residual Maps

- Mapping the residual of our models to Chaos
- Compare EEJ to perfect equator Calculated from Chaos for 180 -> 180 in 1-degree steps (360 points)

Data alone

98 EEJ points

360 Equator points (calculated from Chaos)

Comparison with Vector Data

- We also have vector data for March 2019
- Limit to latitude range -50° -> +50°
- No Backus effect, but bigger problem of polar gap

Vector data

98 EEJ points

360 Perfect Equator points

Correcting for the Crustal Field

- Static part of field degree 20– 40
- Take residual of data to degree 20 and 40 field
- Look at difference between the two residuals for signals that could influence the minimum of EEJ signal
- Clear signal around 4 degrees latitude, 22 longitude (Bangui)

Correcting for the Crustal Field

 Correction helps fill in gaps in EEJ position along the equator

Maps after Correction

230 EEJ points

Changed scale

Vector data

Observatory means

- Add in available monthly means
- Correct for observatory bias
- Vector data observatory only independent starting model
- Much better convergence with electrojet data
- However, closer to Chaos model with these data removed
- Suggests electrojet data very useful but must be correct!

Reflections

- Magnetic equator information from dayside data picking electrojet
- Highly sensitive to small picking errors
- Convergence issues small changes to misfit bring closer to expected modl
- Corrected for crustal field external field as well?
- Provide a stable model, but position errors bias model
- Vector data clearly more reliable for equatorial field
- However, if only scalar data available, careful work will produce a quality model, although vector data are better
- Hopefully, future satellites will be equipped that this method is not necessary!