# **Estimating tidal transports from geomagnetic satellite observations**

**Aaron Hornschild<sup>1</sup>**, Jan Saynisch-Wagner<sup>1</sup>, Julien Baerenzung<sup>2</sup> and Maik Thomas <sup>3</sup>

> <sup>1</sup>German Research Centre for Geosciences, Potsdam Germany <sup>2</sup> TU Technical University Berlin, Berlin, Germany <sup>3</sup> Freie Universität Berlin, Berlin, Germany





Swarm 10 Year Anniversary & Science Conference 2024 8 - 12 April, Copenhagen



## **Tidal ocean-induced magnetic signals**



#### Tidal-induced magnetic signal (M<sub>2</sub>)

Movement of conductive seawater through the Earth's magnetic generates electric currents and induces secondary magnetic signals

> Swarm observations of the ocean-induced magnetic fields as source of information about the ocean system



### **EM signal dependencies**





### **EM signal dependencies**



#### GFZ Helmholtz Centre Potsbam

## **Tidal elevations by satellite altimetry**

- Ocean tides are a major driver of ocean global oceanic mixing
- ► Global observation of the tides are so far based on **satellite altimetry**
- ► Tidal elevations are of high interest and globally well observed



#### Tidal elevation of M<sub>2</sub>



Ocean tidal data assimilation model HAMTIDE

However, deep-ocean tidal currents are difficult to observe and not well know



## **Poloidal-toroidal decomposition**

► Tidal transports are expressed in poloidal and toroidal components  $U = U_P + U_T$ 

ωt

### Poloidal component (U<sub>P</sub>)

Directly linked to tidal elevation

$$i\omega\xi = -\nabla_h \mathbf{U}_{\mathbf{P}}$$
  
with the tidal elevation:  $\xi = \hat{\xi}e^i$ 

Can be easily observed by satellite altimetry

### Toroidal component (U<sub>T</sub>)

- Divergence free component
- Linked to dissipation by friction, mixing, loading and self-attraction
- Parameters must be well-known
- Can be hardly observed by satellite altimetry

In contrast:

- Magnetic signals are **directly sensitive** to tidal transports
- Requires only very loose prior assumptions





### **Kalman filter-based assimilation**

► Using Kalman filter inversion: geomagnetic field model **KALMAG** (*Baerenzung et al., 2020,2022*)



#### GFZ Helmholtz Centre

## **Magnetic field observation operator**

- Incorporate invertible observation operator for tidal transports into Kalmag
- Magnetic field operator consists of two steps:



Mantle conductivity, Grayver et al. (2017)

6



## Estimated tidal transport (M<sub>2</sub>)

► Kalmag-inversion of the *poloidal transport* (*real part*) from Swarm satellite observations:

Kalmag estimate:

**HAMTIDE** comparison:





## Estimated tidal transport (M<sub>2</sub>)

► Kalmag-inversion of the *toroidal transport* (*real part*) from Swarm satellite observations:

Kalmag estimate:

**HAMTIDE** comparison:



### **Power spectrum of tidal transport**

► Spherical harmonics (SH) power spectrum of M<sub>2</sub> tidal transports:



#### GFZ Helmholtz Centre Potspam

9

## **Summary & Conclusion**

- ► We inverted Swarm satellite magnetometer data for tidal transports
- ► We used a Kalman filter (Kalmag) for successful inversion
- ► Inversion relies on very few prior information





Available: https:// ionocovar.agnld.u ni-potsdam.de/ Kalmag/





### Thank you for your attention!





