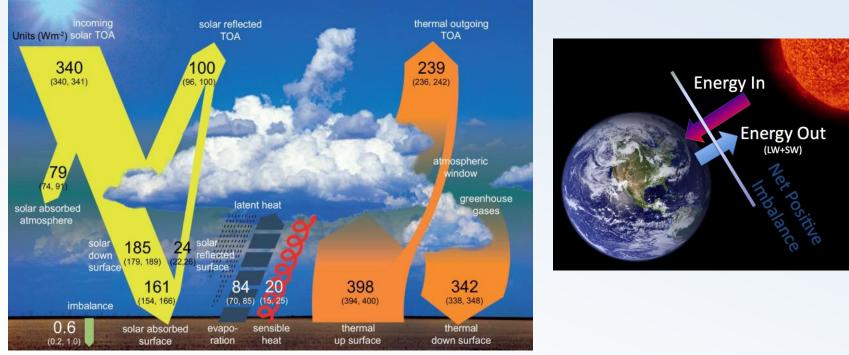
THE IMPORTANCE OF SOLAR IRRADIANCE

Margit Haberreiter

TRUTHS for Climate Workshop ECSAT, 27-28.06.2024

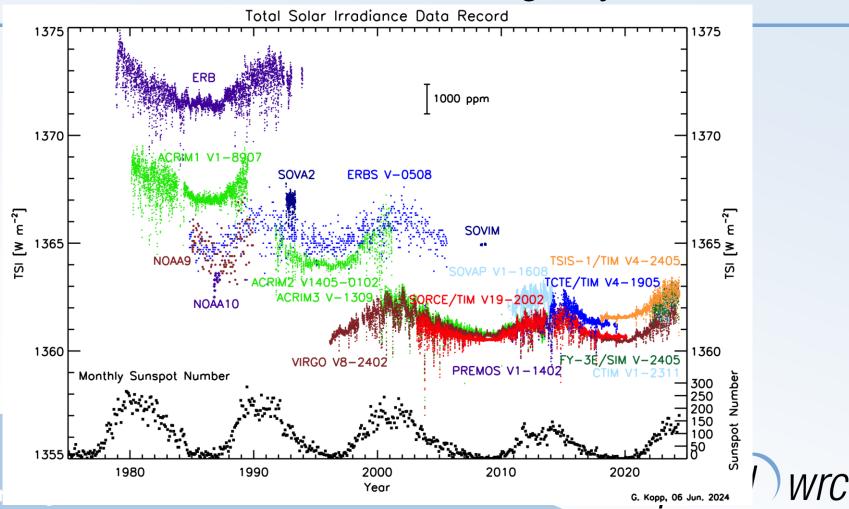
The Importance of Solar Irradiance

1. Solar Influence on Climate


- TSI and SSI are ECVs
- Precise knowledge of TSI (and SSI) variability is key to our understanding of the role of the Sun for the Earth's climate
- Climate community depends on reconstruction models:
 - for the past when no observations are available
 - for future projections
 - Differences of the reconstruction models exist (but they get smaller)
- Models need to be constrained to the best possible observations

2. Earth Energy Imbalance

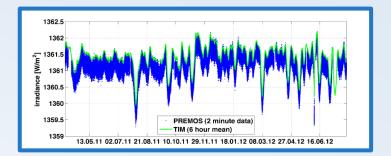
- the Earth Energy Imbalance (estimated to be up to 1.0 W/m²)
- To determine EEI the incoming TSI needs to be known better than 0.1 W/m² or EEI is determined differentially as with ECO (EE12 Candidate Mission)


TSI is a key element of the Earth Radiation Budget

Wild et al. (2015)

pmod wrc

TSI: We have come a long way...



SI-traceable Total Solar Irradiance is key!

Total solar irradiance measurements with PREMOS/PICARD

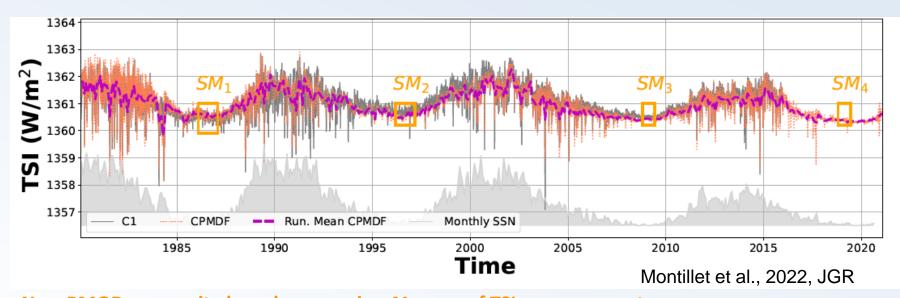
Cite as: AIP Conference Proceedings 1531, 624 (2013); https://doi.org/10.1063/1.4804847 Published Online: 10 May 2013

Werner Schmutz, André Fehlmann, Wolfgang Finsterle, Greg Kopp, and Gerard Thuillier

IAU Resolution B2 2015

THE ASTRONOMICAL JOURNAL, 152:41 (7pp), 2016 August © 2016. The American Astronomical Society. All rights reserved.

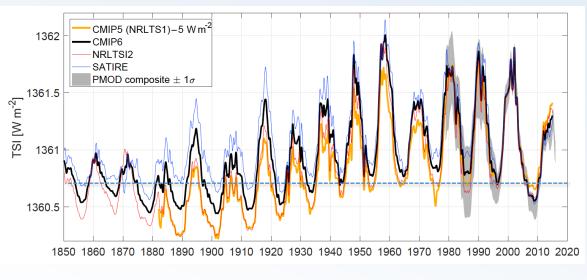
doi:10.3847/0004-6256/152/2/41


NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

ANDREJ PRŠa¹, PETR HARMANEC², GUILLERMO TORRES³, ERIC MAMAJEK⁴, MARTIN ASPLUND⁵, NICOLE CAPITAINE⁶, Jørgen Christensen-Dalsgaard⁷, Éric Depagne^{8,9}, Margit Haberreiter¹⁰, Saskia Hekker^{11,12}, James Hilton¹³, Greg Kopp¹⁴, Veselin Kostov¹⁵, Donald W. Kurtz¹⁶, Jacques Laskar¹⁷, Brian D. Mason¹³, Eugene F. Milone¹⁸, Michele Montgomery¹⁹, Mercedes Richards²⁰, Werner Schmutz¹⁰, Jesper Schou²¹, and Susan G. Stewart¹³

Solar Conversion Constants
$$1\mathcal{R}^{N}_{\odot} = 6.957 \times 10^{8} \text{ m}$$
 $1\mathcal{S}^{N}_{\odot} = 1361 \text{ W m}^{-2}$ $1\mathcal{L}^{N}_{\odot} = 3.828 \times 10^{26} \text{ W}$ $1\mathcal{T}^{N}_{\odot} = 5772 \text{ K}$

PMOD TSI Composite


6

WrC

New PMOD composite based on merging 41 years of TSI measurements. 30-day running mean of Composite Community Composite C1 (Dudok de Wit et al., 2017) Boxes: Solar minima (SM) for each solar cycle Monthly sunspot number is also displayed.

Continuation of the PMOD-composite based on ML techniques

Total Solar Irradiance Variability

Matthes et al., 2017

graub Inden Education and Research.

Current Status TSI

٠

- **TSI accuracy**:294 ppm (k=1)
- TSI stability: 10-40 ppm/yr
- diverging reconstruction models
- overlapping measurements or SI-traceability in space are required
- improved TSI accuracy and stability absolutely crucial

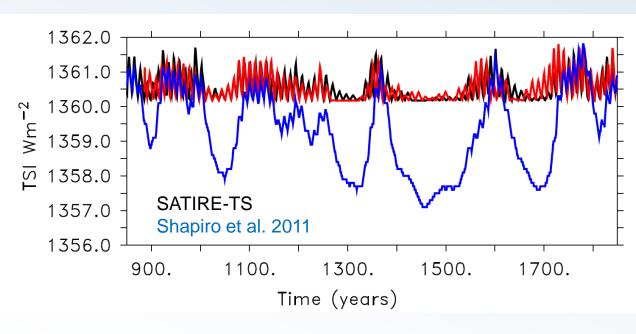
New TSI User Requirements

TSI accuracy of TRUTHS:

 Threshold:
 200 ppm or 0.27 W/m²

 Goal:
 70 ppm or 0.1 W/m²

• TSI Stability:


Threshold: 5 ppm/yr

(50 ppm or 0.07 W/m² in 10 years)

Goal: 1 ppm/yr

(10 ppm or 0.014 W/m² in 10 years)

Irradiance reconstructions to the past

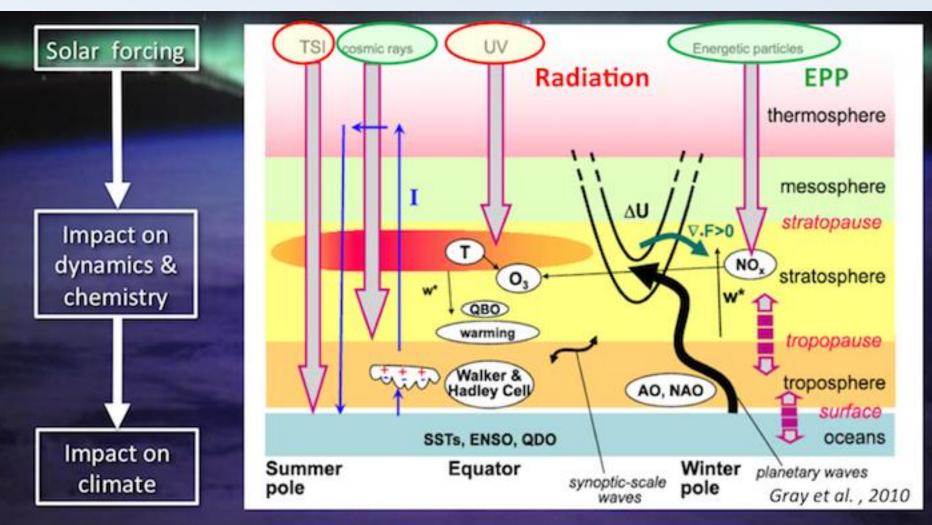
Jungclaus et al., 2017

graub Inden Education and Research.

Current Status TSI

- TSI accuracy: 294 ppm
- TSI stability: 10-40 ppm/yr

Implications


- Strongly diverging longterm reconstruction models
- Impact on future projections
- improved TSI accuracy and stability absolutely crucial

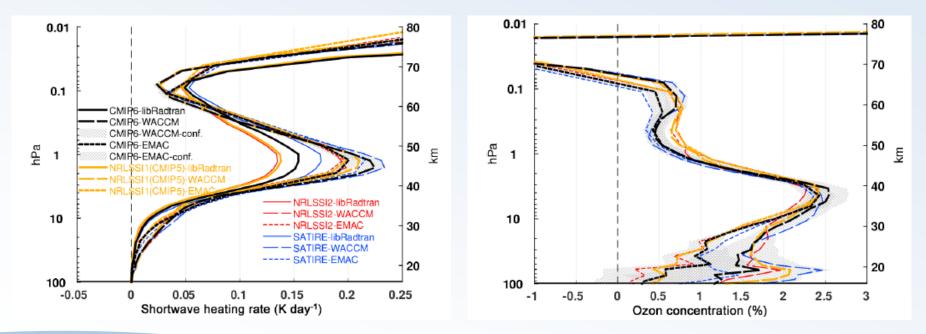
-> Improved future projections will be possible

Solar Influence on atmospheric chemistry and climate

- The spectral distribution of the energy is the key input to climate models
- SSI models need to be constrained to the best possible observations
- Spectral variability crucially depends on the used model or data composite

pmod) wrc

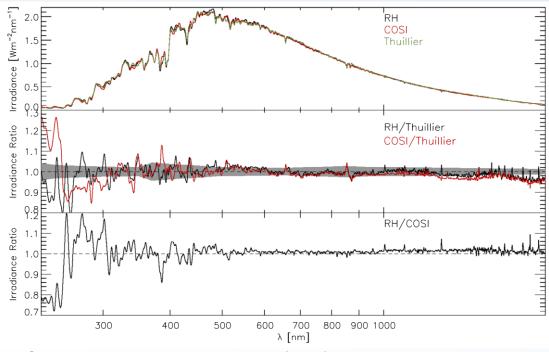
SSI – Important spectral bands


Spectral region	Gases	CESM1(WACCM)	EMAC	
SW radiation ^{a,b}				
Lyman-α	O ₂		[121–122]	_
Schumann-Runge continuum	O ₂		[125–175] (3)	Not observed
Schumann–Runge bands	O ₂		[175–205]	
Herzberg cont./Hartley bands	O_2, O_3	[200–245]	[206.5–243.5] (15)	by TRUTHS
Hartley bands	03	[245-275] (2)	[243.5–277.5] (10)	Observed
Huggins bands	O ₃	[275–350] (4)	[277.5–362.5] (18)	Obscived
UV-A/Chappuis bands	O ₃	[350–700] (2)	[362.5–690] (58)	by TRUTHS
Near Infrared/Infrared	O_2, O_3, CO_2, H_2O	[700–5000] (10)	[690-4000] (3)	
	Photolysis			-
Lyman-α		[121–122]	[121–122]	_
Schumann–Runge continuum		[122-178.6] (20)		
Schumann–Runge bands		[178.6-200] (12)	[178.6-202]	
Herzberg cont./Hartley bands		[200-241] (15)	[202–241]	
Hartley bands		[241-291] (14)	[241-289.9]	
Huggins bands		[291-305.5] (4)	[289.9-305.5]	Matthes et al.,
UV-B		[305.5–314.5] (3)	[305.5–313.5]	2017
UV-B/UV-A		[314.5–337.5] (5)	[313.5–337.5]	
UV-A/Chappuis bands		[337.5-420] (17)	[337.5-422.5]	Wrc
Chappuis bands		[420-700] (9)	[422.5-682.5]	

grau

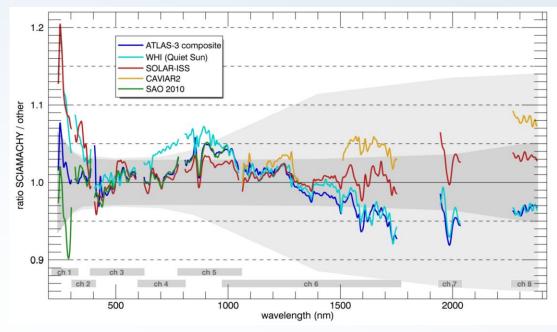
Detailed Effects of SSI on Earth's atmosphere

Shortwave Heating Rate


Ozone concentration

Matthes et al., 2017, GMD, Solar Forcing for CMIP6

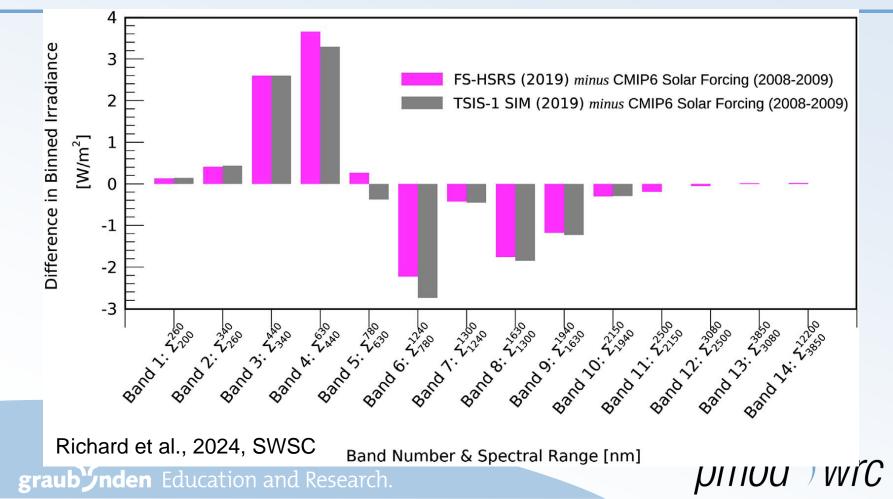
Solar Reference spectrum


Criscuoli, Rempel, Haberreiter et al. (2020)

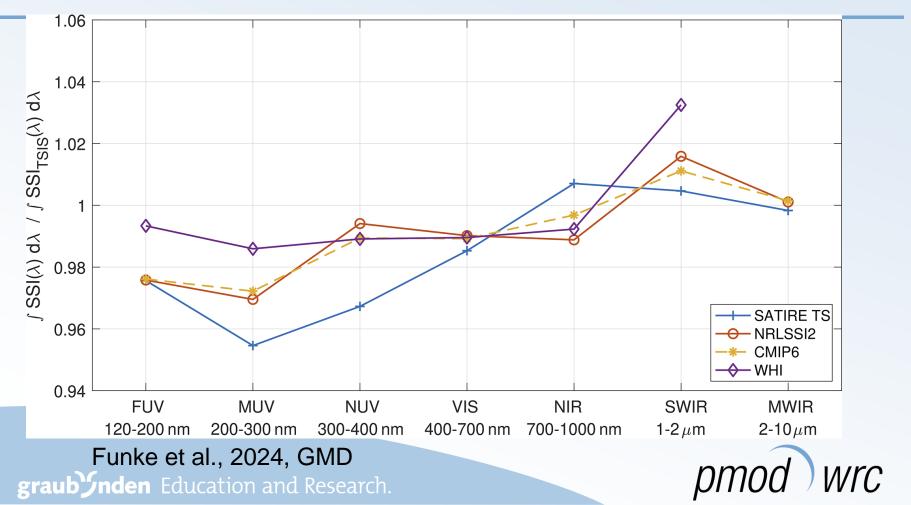
ATLAS3 (Thuillier et al. (2004) up to now standard observational reference

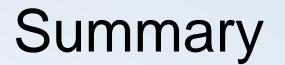
- Radiative transfer codes (COSI, RH) agree well with the ATLAS3 Thuillier spectrum
- If IR part of the spectrum needs to be revised: challenge for solar irradiance modelling community

SSI – Infrared spectral range


Current Status SSI

- ATLAS3 (Thuillier et al., 2004) up to recently standard observational reference; see also high-resolution standard spectrum: <u>ftp://ftp.pmodwrc.ch/pub/data/SolarReference</u> <u>Spectrum/</u>
- SORCE/SIM (part of WHI) also linked to ATLAS3 spectrum
- Recent measurements lead to a significantly lower IR level (i.e ratio > 1)
- Large uncertainty in the IR part of the spectrum
- Conservative uncertainty of SSI instrument: e.g. SCIAMACHY: ~ 5-13 %


Ratio of SCIAMACHY dataset to the ATLAS3, WHI, SOLAR-ISS, CAVIAr2 and SAO 2010 datasets. The lower limit of the SCIAMACHY uncertainty (2σ) is indicated in dark grey while the light grey area indicates an additional estimated uncertainty in the NIR because of the ad hoc stray-light correction. (Hilbig et al. , 2018)


pmod wrc

Difference TSIS-SIM to CMIP6

New Solar Reference Spectrum

- Total Solar Irradiance is important for the Earth Radiation Budget (and its imbalance)
 - TRUTHS TSI will be incorporated in the PMOD TSI composite
- Solar Spectral Irradiance variability is key for the understanding of the atmospheric chemistry and climate
 - TRUTHS SSI data product will improve our capabilities to constrain SSI reconstruction models
- New solar reference spectrum will TRUTHS confirm it?
 - TRUTHS can give insight to the spectral shape of the quiet Sun spectrum

