

Tuning ICESat-2 for Mountain Snow Depth Observation: Terrain Effects on ICESat-2-derived Snow Depth in Vegetated Alpine Watersheds

Karina Zikan (presenter), Ellyn Enderlin, Hans-Peter Marshall, Shad O'Neel, Alex Iturriria, Madeline Gendreau

Seasonal Snow and Water resources

- Seasonal snow is a key water resource around the world and is highly sensitive to changes in climate
- In the western US over 75% of our water supply is dominated by seasonal snow run-off (Barnett)
- Watershed forecasters rely on a sparse set of observations but satellite observations can help fill data gaps

Accumulated annual snowfall divided by annual runoff over the global land regions. (Barnett)

Snow Distribution is highly variable

(Mott et al.)

Measuring Snow Depth with ICESat-2

Snow-on ICESat-2 elevation - Reference snowfree elevations = Snow Depth

- ICESat-2 can measure snow depths under canopy
- ICESat-2 tracks are infrequent in the midlatitudes
 - Compare to an independent snow-free digital terrain model (DTM) to maximize available observations
- Alpine Environments introduce complications
 - Complicated terrain
 - Vegetation

ICESat-2 Snow Depth Previous Studies

Enderlin et al. (2022) Deschamps-Berger et al. (2023) Besso et al. (2024)

We can identify snow signals in ICESat-2 data but:

- Uncertainties from ~0.5 m to 3 m
- As slope increases, Snow depths become increasingly negatively biased

(Besso et al.)

How can we increase precision in our ICESat-2 snow depth estimates?

- Snow cover classification
 Briefly touch on
- Reference elevation algorithm
- Length of ICESat-2 footprint
- Correcting slope bias

Another time

How can we increase precision in our ICESat-2 snow depth estimates?

- Coregistration
- Snow cover classification
- Reference elevation algorithm
- Length of ICESat-2 footprint
- Correcting slope bias

Site DTM & Boundary Shapefile

Product:

• ATL06 with ATL08 ground photon classification

SlideRule Earth science data processing as a service

ATL06

Landsat 8/9 & Sentinel 2 Imagery

Normalized Difference Snow Index (NDSI)

Threshold: 0.4

Landsat 8/9 & Workflow Sentinel 2 Imagery [4785 [4780 4780 80x [wg] Buji N 15 520 Easting (km)

Easting [km]

Easting [km]

Landsat 8/9 & Sentinel 2 Imagery

ICESat-2 Tracks

△ SNOTEL Station

Area: 239 km²

Area: 183 km²

Area: 126 km²

Area: 38 km²

Coregistration Approach

Large variation in NMAD between sites

- Minimum Grid Search
 - Time consuming and computationally demanding
 - Confident we find the global minimum
- Gradient Descent
 - Finds local minima
- Nuth and Kääb Coregistration
 - \circ $\,$ Can't run for most of our sites

Coregistration Method	Snow Free Normalized Median Absolute Difference (NMAD)	
	Reynolds	Banner
No coregistration	<mark>0.81</mark>	<mark>1.09</mark>
Gradient Descent	0.57	1.09
Nuth and Kaab	0.54	N/A
Minimum Grid Search	0.34	1.04

Coregistration

Horizontal Coregistration

Vertical Coregistration

Coregistration – Aggregated vs Individual Dates

Coregistration – Aggregated vs Individual Dates

Coregistration – Aggregated vs Individual Dates

- Clearest Snow signal with aggregated coregistration
- By Track coregistration snow signal similar to no coregistration
- Possible causes of a poor individual track coregistration
 - Sparse data
 - Poor spatial coverage

How do our snow depths compare to In-Situ?

Mores

4900

486.4

602 603 804

Orographic patterns in ICESat-2 snow signal!

ICESat-2 Snow Depth tracks – Reynolds

Thank You!

This research is funded by the NASA EPSCoR award 80NSSC20M0222

- Barnett, T. P., et al. "Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions." Nature, vol. 438, no. 7066, Nov. 2005, pp. 303–09. DOI.org (Crossref), https://doi.org/10.1038/nature04141.
- Besso, Hannah, et al. "Mountain Snow Depth Retrievals from Customized Processing of ICESat-2 Satellite Laser Altimetry." Remote Sensing of Environment, vol. 300, Jan. 2024, p. 113843. DOI.org (Crossref), https://doi.org/10.1016/j.rse.2023.113843.
- Brandt, W. Tyler, et al. "Quantifying the Spatial Variability of a Snowstorm Using Differential Airborne Lidar." Water Resources Research, vol. 56, no. 3, Mar. 2020. DOI.org (Crossref), https://doi.org/10.1029/2019WR025331.
- Deems, Jeffrey S., et al. "Lidar Measurement of Snow Depth: A Review." Journal of Glaciology, vol. 59, no. 215, 2013, pp. 467–79. DOI.org (Crossref), https://doi.org/10.3189/2013JoG12J154.
- Deschamps-Berger, César, et al. "Evaluation of Snow Depth Retrievals from ICESat-2 Using Airborne Laser-Scanning Data." The Cryosphere, vol. 17, no. 7, July 2023, pp. 2779–92. DOI.org (Crossref), https://doi.org/10.5194/tc-17-2779-2023.
- Enderlin, Ellyn M., et al. "Uncertainty of ICESat-2 ATL06- and ATL08-Derived Snow Depths for Glacierized and Vegetated Mountain Regions." *Remote Sensing of Environment*, vol. 283, Dec. 2022, p. 113307. DOI.org (Crossref), https://doi.org/10.1016/j.rse.2022.113307.
- JP Swinski, et al. ICESat2-SlideRule/Sliderule: V1.4.6. v1.4.6, Zenodo, 1 Aug. 2022. DOI.org (Datacite), https://doi.org/10.5281/ZENOD0.6949505.
- Mott, Rebecca, et al. "The Seasonal Snow Cover Dynamics: Review on Wind-Driven Coupling Processes." Frontiers in Earth Science, vol. 6, Dec. 2018, p. 197. DOI.org (Crossref), https://doi.org/10.3389/feart.2018.00197.
- Neuenschwander, A. L., et al. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 6. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2023. DOI.org (Datacite), https://doi.org/10.5067/ATLAS/ATL08.006.
- Nuth, C., and A. Kääb. "Co-Registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change." The Cryosphere, vol. 5, no. 1, Mar. 2011, pp. 271 90. DOI. org (Crossref), https://doi.org/10.5194/tc-5-271-2011.
- Smith, Benjamin, et al. "Land Ice Height-Retrieval Algorithm for NASA's ICESat-2 Photon-Counting Laser Altimeter." Remote Sensing of Environment, vol. 233, Nov. 2019, p. 111352. DOI.org (Crossref), https://doi.org/10.1016/j.rse.2019.111352.