Advanced cloud products from the NASA PACE mission and their relevance for other missions

SRON: Bastiaan van Diedenhoven, Otto Hasekamp NASA: Andrew Sayer, Chamara Rajapakshe, Brian Cairns, Wasilewski, Andrzej, Kirk Knobelspiesse

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

Plankton, Aerosol, Cloud, ocean Ecosystem

Ocean Color Imager (OCI)

UV-NIR hyperspectral + 7 SWIR bands ~1 km resolution

Rainbow

UMBC Polarimeter (HARP2)

Hyper

Multi-angle polarimetry in VIS 3 bands + hyper-angular polarimetry in 1 band ~5 km resolution

angular

SPEXone

UV-NIR hyperspectral polarimeter 5 viewing angles ~5 km resolution

Launched 8 Feb 2024 (With the very

(With the very same booster as used later for EarthCARE!)

Plankton, Aerosol, Cloud, ocean Ecosystem

Cloud product	OCI	HARP-2	SPEXone
Detection	Implemented	Planned later	Implemented
Cloud top height	Implemented (O2 A band)	Possibly later	Ongoing (apparent pressure O2 A band)
Cloud top phase	Implemented (SWIR)	Ongoing	N/A
Cloud optical thickness	Implemented (VIS)	Not planned	Not planned
Particle effective radius (liquid/ice)	Implemented (SWIR)	N/A	N/A
Polarimetric drop effective radius and variance	N/A	Ongoing	Possibly later
Ice crystal shape and scattering properties	N/A	Planned later	Possibly later
Drop number concentrations	Not planned	Ongoing (OCI+HARP2)	Possibly later
Cloud water path	Implemented	Ongoing (OCI+HARP2)	Possibly later

OCI bi-spectral cloud optical thickness and effective radius retrievals: MODIS heritage code

OCI SWIR bands: 1.6 μm 2.13 μm 2.25 μm

Overlapping with: MODIS VIIRS MSI- EarthCARE SEVIRI FCI, AHI, ABI,

OCI bi-spectral cloud optical thickness and effective radius retrievals: MODIS heritage code

OCI bi-spectral cloud optical thickness and effective radius retrievals: MODIS heritage code

OCI SWIR bands: 1.6 μm 2.13 μm 2.25 μm

Overlapping with: MODIS VIIRS MSI- EarthCARE SEVIRI FCI, AHI, ABI,

Hyperangular polarimetric cloudbow retrievals of drop size distribution

- Very simple retrievals only using Mie calculations and *relative* measurements
- Accurate for broken, small and/or inhomogeneous clouds, mixed-phase, etc.
- Needs hyper-angular ($\sim 2^{\circ}$) observations resolving cloud bow structure

HARP-2 polarimetric algorithm heritage: Airborne Research Scanning Polarimeter (RSP)

- **Polarimetric** drop size distributions
- Also **Bi-spectral** effective radius
 - 1.64 µm
 - 2.25 µm
- SPEXone-like aerosol products
- Many, diverse campaigns

CAMP²Ex RSP effective radius statistics

AND MON

HARP-2 Liquid index (van Diedenhoven et al., JAS, 2012)

cloud liquid index 20240411 L1C.V2

HARP-2 polarimetric drop effective radius retrievals

- HARP-2 5x5 km² pixel-level retrievals
- HARP-2 gets smaller drops at Maritime cont. compared to South Greenland
- Consistent with Maritime continent being more polluted

HARP-2 polarimetric drop effective radius retrievals

- MODIS bi-spectral (2.13 um) shows larger effective radius than HARP-2
- MODIS bias is especially large at Maritime continent

HARP-2 polarimetric drop effective radius retrievals

HARP-2 effective radii and difference with MODIS are similar to those seen in this region during CAMP2Ex

PACE HARP-2 and OCI

- Fu et al., JGR 2019: MODIS Bi-spectral correction factors
 - based on multi-angle data (MISR)
 - As function of location, solar-viewing geometry, inhomogeneity metrics
- PACE provides opportunity to
 - evaluate corrections
 - expand to land and other SWIR bands
 - make them applicable to essentially any other multi-spectral imager

Recommendations

- Invest in satellite studies on cloud microphysical processes
 - Synergy of multiple observations
 - Model-data integration
 - Instrument concepts
- Explore cloudbow retrievals application to CO2M-MAP (+CLIM+COI2 SWIR)
- Explore high resolution (~50 m) multi-angle cloud polarimetry for cloud 3D shape and microphysical process studies

Conclusion and Outlook

- First HARP-2 pixel-level polarimetric drop size retrievals promising
- OCI cloud products expected this month; HARP-2 products later this year
- HARP-2 products to evaluate and expand bi-spectral bias corrections for essentially all multi-spectral imagers
- PACE cloud *and* aerosol products to be used in EC CleanCloud project to evaluate aerosol-cloud interactions and improve models
- PACE cloud and aerosol to be validated with PACE-PAX and ORCHESTRA
- Cloudbow retrieval may also be applicable to CO2M-MAP!

Retrieval of drop size distribution effective variance (V_{eff})

V_{eff} values converted to k parameter look reasonable and comparable to RSP results (Grosvenor et al. 2018) with peak near 1.

- South of Greenland Maritime Continent 0.20 0.10 0.08 0.15 Frequency Frequency 0.06 0.10 0.04 0.05 0.02 0.00 [∟]----20 0.00 -10 20 -20 -10 20 10 10 Effective radius difference $[\mu m]$ Effective radius difference $[\mu m]$
- MODIS [2.13 um -1.64 um] difference is larger for MC, as expected if 3D effects are an issue. Most of the time 2.13 < 1.64

Zhang and Platnick Are.1.621

Remote sensing of full droplet size distributions using "Rainbow Fourier Transform" method (Alexandrov et al. 2012)

Average *in situ* size distributions for various flight altitude bins

Average RSP size distributions for various cloud top height bins

Droplet size distribution development in various aerosol conditions

- N_a = aerosol concentration from RSP in surrounding air
- Each panel shows results for given day, ordered by N_a
- Large drop mode develops as clouds grow
- Appearance of large drop mode at lower
 C pent for low N_a

Aerosol-cloud interactions + adjustments

PACE sampling of clouds

- HARP-2 polarimetry:
 - Size distribution for all drops in tops of liquid clouds in 5x5 km² field of view
- OCI bi-spectral:
 - Optical thickness of all cloudy 1 km² pixels
- Combined:
 - Number concentrations estimate for liquid clouds in 5x5 km² pixels

$$N_{d} = \frac{\sqrt{5}}{2\pi} \left(\frac{f_{ad} \ c_{w}}{Q_{e} \ \rho_{w}} \right)^{1/2} \left(\frac{\tau_{c}}{k^{2} \ r_{e}^{5}} \right)^{1/2}$$

LES+3D radiative transfer of \sim 7x7 km² field at 50 m resolution

