

Retrieval of Cloud Properties for the Copernicus Atmospheric Missions Sentinel-4 (S4) and TROPOMI / Sentinel-5 Precursor (S5P) using deep neural networks

Fabian Romahn¹, Diego G. Loyola¹, Adrian Doicu¹, Victor Molina Garcia¹, Ronny Lutz¹, Athina Argyrouli²

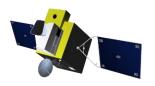
(1) German Aerospace Center (**DLR**), (2) Technical University of Munich (**TUM**)

ESA UNCLASSIFIED – For ESA Official Use Only

Sentinel-4 (S4) and Sentinel-5 Precursor (S5P) are passive earth observation satellites for trace gas retrieval of the Copernicus programme:

Sentinel-4

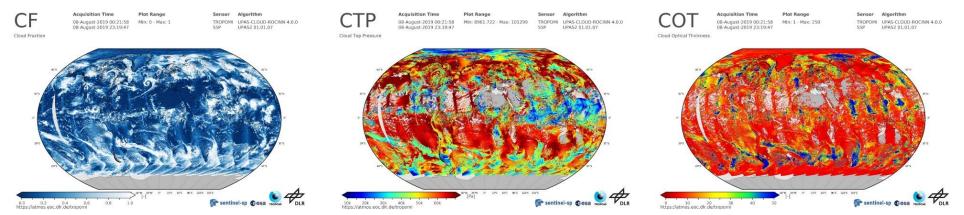
- launch date in 2025
- geostationary orbit facing europe
- spectral range: UV/VIS/NIR
- spatial resolution: 8 km x 8 km



Sentinel-5 Precursor

- launched in october 2017
- sun synchronous orbit at ~ 820 km
- spectral range: UV/VIS/NIR/SWIR
- spatial resolution: 5.5 km x 3.5 km

A requirement for trace gas retrieval is accurate cloud information \rightarrow DLR is responsible for the operational **CLOUD product**



Challenges:

- Large amounts of data
- Near real time requirements (NRT)
- → Application of machine learning techniques to improve performance compared to classical algorithms

Application of neural networks

Problem:

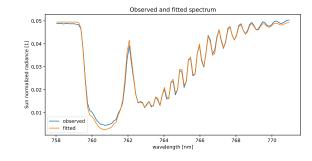
Find parameters x that minimize residual $||F(x) - y||_2$ between a known vector y and the mapping of the parameters F(x) – where F is a predefined function

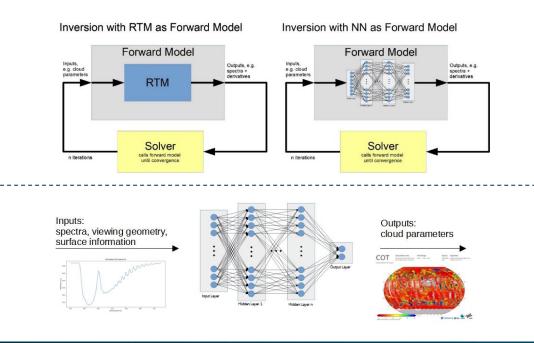
in remote sensing:

x: state of atmosphere, y: measured spectrum, F: radiative transfer model (RTM)

Two approaches:

- 1. NN as forward model of a spectral fitting algorithm:
 - $F: X \to Y$ state of atmosphere \to spectrum
 - substitutes and approximates the RTM
 - gradients (w.r.t to retrieval pamareters) usually need to be provided for solver
 - called in each iteration
- 2. NN for **direct inversion**:
 - $F^{-1}: Y \to X$, spectrum \to state of atmosphere
 - F⁻¹ is generally unknown, can only be inferred through samples
 - No gradients needed after learnnig
 - called only once



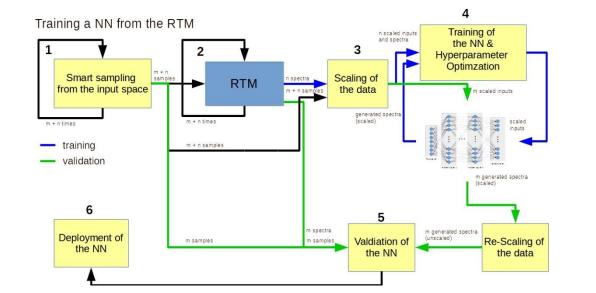


→ THE EUROPEAN SPACE AGENCY

NN as forward model

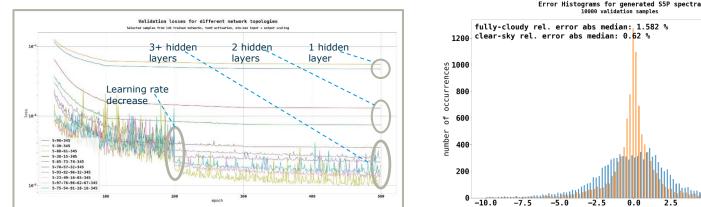
1. How to get from RTM to NN?

 \rightarrow NN Lifecycle chain: General procedure to replace RTM of an inversion algorithm by a NN

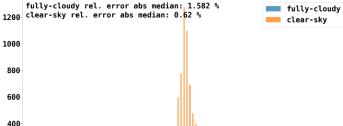


2. Finding optimal NN configuration is challenging, there are many aspects to consider:

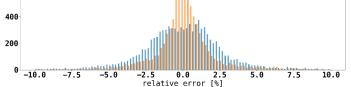
- NN topology
- activation functions
- dataset sampling
- learning algorithm



NN performances for different **topologies**



10000 validation samples



S5P NN performance - clear-sky and fully-cloudy

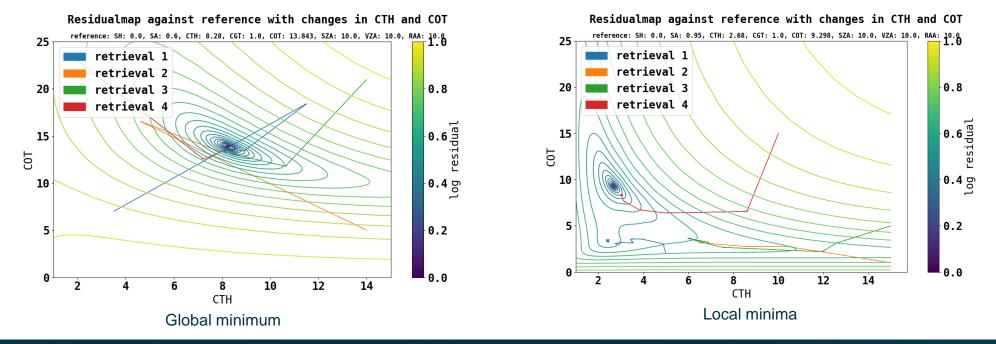
Spectral fitting challenges

With a NN as forward model, a spectral fitting algorithm can be used for the retrieval of the atmospheric parameters

However, this is still challenging:

- spectral fitting problem is generally ill-posed
 > local minima
- real data contains noise in measurements

→ ROCINN algorithm (part of the operational CLOUD product) uses **Tikhonov Inversion**, which adds a regularization term to the problem For difficult cases, good **a-priori** values for the retrieval parameters are still important:



NN for direct Inversion

→ THE EUROPEAN SPACE AGENCY

- NN for direct inversion can avoid some of the issues of the spectral fitting:
 - no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for convergence, etc.), all settings via the hyperparameters and training of the network
 - no a-priori necessary
 - only one call (iteration) per problem
- Input: spectra, viewing geometry, surface parameters, Output: cloud parameters (topologies: NN as FM: 7-66-77-26-89-78-94-99-107, NN for direct inversion: 112-80-80-80-80-2)
- Evaluation on validation dataset:



Uncertainty Quantification

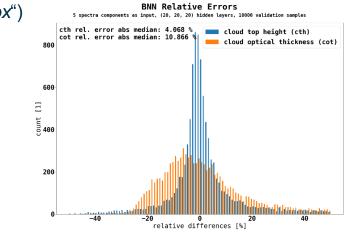
- Drawback: No indication for the quality of the results for the direct inversion NN ("*blackbox*")
- In contrast to the spectral fitting with e.g. iterations, convergence, residual, etc.
- \rightarrow Uncertainty Quantification

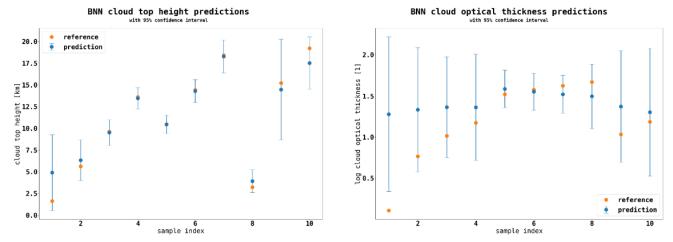
Approaches:

- Ensemble of NNs
 - captures model uncertainties through sampling
- Bayesian neural networks (BNN)
 - learns uncertainties in data and model parameters
 - output is a probability distribution
 - more complex and are harder to train
 → use of autoencoders to reduce complexity

Evaluation:

- 1. BNN performs slightly worse than the conventional NN (taking the means as output)
 - learning is harder (much slower), current results likely not optimal
- 2. Standard deviation of ouptuts allows definition of a confidence interval
 - reference values are mostly inside
 → reliable quantification of uncertainties





Retrieved CTH (left) and COT (right) values for 10 random samples

→ THE EUROPEAN SPACE AGENCY

Conclusions and Outlook

1. NN as forward models:

- can improve speed of existing retrieval algorithms by orders of magnitude through substitution of the radiative transfer model \rightarrow near real time applicable
- NN lifecycle chain offers training and integration of specialized NNs
- many properties from classical retrieval algorithms are inherited:
 - retrieval diagnostics
 - difficulties with ill posed problems, local minima
- performance allows for potential in inversion algorithm improvements

2. NN for direct inversion:

- easy to apply, good initial performance, no a-priori needed
- conventional NNs are "black boxes", no uncertainty quantification
- Ensemble of NNs, BNNs as a possibility to overcome this:
 - provide error quantifications
 - BNNs more complex and harder to train but provide reliable error quantifications

→ NNs for direct inversion, especially BNNs with uncertainty quantification, have great potential for retrieving cloud properties for S5P as an alternative to the current forward model approach

- Further investigations in hyperparameter selection and learning have to be made
- Invertible neural networks (INN), that learn forwards and backwards and can also provide distributions are another interesting approach that should be followed

For further questions, please contact me: Fabian.Romahn@dlr.de