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Copernicus Satellite Sentinel-5 Precursor (S5P) and Sentinel-4 (S4)

Sentinel-4 (S4) and Sentinel-5 Precursor (S5P) are passive earth observation satellites for trace gas retrieval of the Copernicus programme:

A requirement for trace gas retrieval is accurate cloud information

→ DLR is responsible for the operational CLOUD product

Challenges:

▪ Large amounts of data

▪ Near real time requirements (NRT)

→ Application of machine learning techniques to improve performance compared to classical algorithms

Sentinel-4 Sentinel-5 Precursor

▪ launch date in 2025

▪ geostationary orbit facing europe

▪ spectral range: UV/VIS/NIR

▪ spatial resolution: 8 km x 8 km

▪ launched in october 2017

▪ sun synchronous orbit at ~ 820 km

▪ spectral range: UV/VIS/NIR/SWIR

▪ spatial resolution: 5.5 km x 3.5 km
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Application of neural networks

Problem:

Find parameters 𝑥 that minimize residual 𝐹 𝑥 − 𝑦 2 between a known vector 𝑦
and the mapping of the parameters 𝐹(𝑥) – where 𝐹 is a predefined function

in remote sensing: 

𝑥: state of atmosphere, 𝑦: measured spectrum, 𝐹: radiative transfer model (RTM)

Two approaches:

1. NN as forward model of a spectral fitting algorithm: 

▪ 𝐹: 𝑋 → 𝑌 state of atmosphere → spectrum

▪ substitutes and approximates the RTM

▪ gradients (w.r.t to retrieval pamareters) 

usually need to be provided for solver

▪ called in each iteration

2. NN for direct inversion:

▪ 𝐹−1: 𝑌 → 𝑋, spectrum → state of atmosphere

▪ 𝐹−1 is generally unknown, 

can only be inferred through samples

▪ No gradients needed after learnnig

▪ called only once
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NN as forward model

1. How to get from RTM to NN?

→ NN Lifecycle chain:

General procedure to replace RTM 

of an inversion algorithm by a NN

2. Finding optimal NN configuration 

is challenging, there are many 

aspects to consider:

▪ NN topology

▪ activation functions

▪ dataset sampling

▪ learning algorithm

▪ …

NN performances for different topologies

1 hidden
layer

2 hidden
layers

3+ hidden
layers

Learning rate 
decrease

S5P NN performance - clear-sky and fully-cloudy
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Spectral fitting challenges

With a NN as forward model, a spectral fitting algorithm can be used for the retrieval of the atmospheric parameters

However, this is still challenging:

▪ spectral fitting problem is generally ill-posed

→ local minima

▪ real data contains noise in measurements

→ ROCINN algorithm (part of the operational CLOUD product) uses Tikhonov Inversion, which adds a regularization term to the problem

For difficult cases, good a-priori values for the retrieval parameters are still important:

Local minimaGlobal minimum
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▪ NN for direct inversion can avoid some of the issues of the spectral fitting:

▪ no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for convergence, etc.), 

all settings via the hyperparameters and training of the network

▪ no a-priori necessary

▪ only one call (iteration) per problem

▪ Input: spectra, viewing geometry, surface parameters, Output: cloud parameters
(topologies: NN as FM: 7-66-77-26-89-78-94-99-107, NN for direct inversion: 112-80-80-80-80-2)

▪ Evaluation on validation dataset:

→ Best results for cloud top height: 0.49% vs. 2.46% (NN as FM), 1.88% (RTM as FM)

→ Best results for cloud optical thickness: 8.35 % vs 17.06% (NN as FM), 8.89% (RTM as FM)

NN for direct Inversion
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Uncertainty Quantification

▪ Drawback: No indication for the quality of the results for the direct inversion NN („blackbox“)

▪ In contrast to the spectral fitting with e.g. iterations, convergence, residual,  etc.

→ Uncertainty Quantification

Approaches:

▪ Ensemble of NNs

▪ captures model uncertainties through sampling

▪ Bayesian neural networks (BNN)

▪ learns uncertainties in data and model parameters

▪ output is a probability distribution

▪ more complex and are harder to train

→ use of autoencoders to reduce complexity

Evaluation:

1. BNN performs slightly worse than the

conventional NN (taking the means as output)

▪ learning is harder (much slower), 

current results likely not optimal

2. Standard deviation of ouptuts allows

definition of a confidence interval

▪ reference values are mostly inside

→ reliable quantification of uncertainties

BNN relative retrieval errors for CTH and COT from validation data set

Retrieved CTH (left) and COT (right) values for 10 random samples
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Conclusions and Outlook

1. NN as forward models:

▪ can improve speed of existing retrieval algorithms by orders of magnitude through substitution of the radiative transfer model → near

real time applicable

▪ NN lifecycle chain offers training and integration of specialized NNs

▪ many properties from classical retrieval algorithms are inherited:

▪ retrieval diagnostics

▪ difficulties with ill posed problems, local minima

▪ performance allows for potential in inversion algorithm improvements

2. NN for direct inversion:

▪ easy to apply, good initial performance, no a-priori needed

▪ conventional NNs are „black boxes“, no uncertainty quantification

▪ Ensemble of NNs, BNNs as a possibility to overcome this:

▪ provide error quantifications

▪ BNNs more complex and harder to train but provide reliable error quantifications

→ NNs for direct inversion, especially BNNs with uncertainty quantification, have great potential for retrieving cloud properties for

S5P as an alternative to the current forward model approach

▪ Further investigations in hyperparameter selection and learning have to be made

▪ Invertible neural networks (INN), that learn forwards and backwards and can also provide distributions are another interesting approach that

should be followed

For further questions, please contact me: Fabian.Romahn@dlr.de


