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• Long-lived halogenated compounds such as CFC-12, PFC-14, HCFC-22 or SF6 are potent greenhouse gases.
• Following the Montreal Protocol, many of these substances have seen their concentrations evolving rapidly in the atmosphere.
• Today, their Instantaneous Radiative Efficiency (IREs) are mostly evaluated from radiative transfer model calculations for a few idealized atmospheres.
• Here, a measurement-based approach is proposed. Clear-sky IREs of a series of halogenated compounds are derived at the top-of-the-

atmosphere (TOA) directly from the long-term changes in the Earth’s spectrally resolved Outgoing Longwave Radiation (SR-OLR)1,2. 
• Compared to other methods, no computationally expensive radiative transfer model calculations or assumptions on the atmospheric state are 

required. 

• 15 years (2008-2022) of clear-sky SR-OLR are derived from the IASI radiance 
measurements1. 

• For each IASI channel between 750 and 1400 cm-1, the global linear trends (LT) 
in the SR-OLR (in W m-2 yr-1) are calculated2.

• These LTs contain the spectral signature of the absorbing species whose
concentration is evolving globally in the atmosphere. 

• For each of the identified halogenated species, the clear-sky IRE (W m-2 ppbv-1) 
at TOA is derived in three steps:

1. The contribution of CO2, N2O and CH4 are removed by fitting and subtracting
their respective Jacobians to the original LT.

2. The forcing rate of change (FRC, in W m-2 yr-1) is calculated by fitting and 
integrating the Jacobian of the halogenated compounds to the residual LT.

3. For the conversion to the IRE (W m-2 ppbv-1), the FRC is multiplied by the 
period length (15 years) and divided by the change in concentration between
2008 and 2022. 

CFC-11 CFC-12 SF6 HCFC-22 HFC-134a

IRE (W m-2 ppbv-1) 0.31 ± 0.03 0.37 ± 0.08 0.75 ± 0.10 0.31 ± 0.06 0.23 ± 0.07

IRF (W m-2) 0.067 ±
0.008

0.183 ±
0.041

0.008 ±
0.001

0.077 ±
0.016 

0.030 ±
0.009

• Total uncertainties on the IRE and IRF derived from a full sensitivity
analysis (methodology, construction of the Jacobians, slope of the LT, …).  

• Clear signature of 5 halogenated species: CFC-11, CFC-12, SF6, HCFC-22 
and HFC-134a.

• Total FRC<0 (-0.0150 W m-2 15years-1) → decrease in CFC-11 and CFC-12 
not compensating the increase in SF6, HCFC-22 and HFC-134a 
concentrations.

• Over 65% of the present day IRF (W m-2) is due to CFC-11 and CFC-12.
• SF6: largest IRE (0.75 W m-2 ppbv-1) but lowest IRF and FRC because of 

lowest atmospheric concentration.

• Comparison with literature :
➢ Results from literature (e.g. 3,4,5,6) are converted from stratospheric-

adjusted and all-sky RE to clear-sky IRE using average factors.
➢ Very good correspondence for HCFC-22, HFC-134a and SF6.
➢ Reasonable correspondence for CFC-11 and CFC-12.
➢ Differences can be mostly explained by the uncertainties on the IREs. 
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Clr: clear-sky

All: all-sky

STA-RE: stratospheric temperature adjusted RE

TRP: tropopause

TOA: top-of-the-atmosphere
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