

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

JAXA EarthCARE Validation Plan

Toshiyuki Tanaka, Takuji Kubota Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA)

JAXA Validation Related Activities

JAXA Validation Team

- Defining validation method and approaches: JAXA validation implementation plan (JAXA VIP)
- ✓ Regular Val. team meetings
- ✓ Maintenance and continuous observation
- \checkmark Validation rehearsal with EC Research A-Train product
- ✓ Matchup frequency analysis

 \checkmark

 \checkmark

 \checkmark

 \checkmark

لمر

Collaboration/Coordination

International collaborations

JAXA

- ✓ Airborne campaign with DLR
- ✓ Ground-based correlative data exchange with NOAA
- Contributing to ACPV aiming a CEOS document

·eesa

ESA-JAXA Validation Implementation Plan

Confluence page for validation-related

Mutual use of validation related tools

satellite operation information

Validation workshops

Web pages/tools development

- ✓ EarthCARE product monitor (Quick Look)
- ✓ EarthCARE Orbit Prediction
- ✓ EarthCARE Orbit Search
- ✓ JAXA EarthCARE Validation portal
- ✓ Validation Data Archive System (VDAS)
- ✓ Validation Matchup Web

Campaigns

Ground campaign provides multisensor detailed evaluations, and airborne campaign abundant number of matchup data in early phase

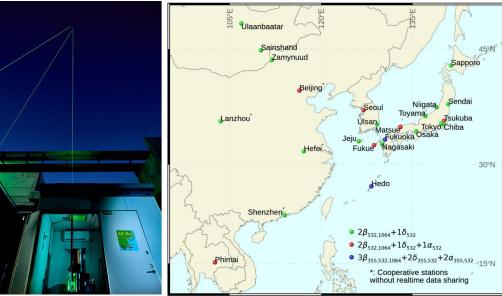
Spaceborne

AXA

·eesa

Satellite sensors provide global evaluations and large amount of matchup data

Networks


Long-term ground observation networks provide detailed validations

XA Cesa

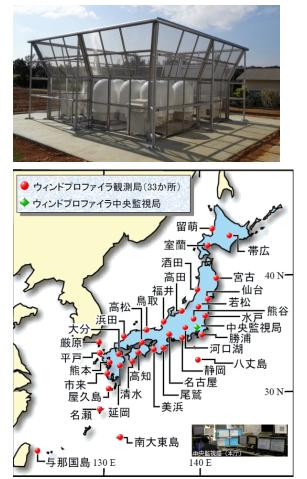
AD-Net

Asian dust and aerosol lidar observation network Main correlative observation for ATLID product

T. Nishizawa-san's and J. Yoshitaka-san's talk on Day 5

Other Networks: AD-Net, SAVERNET, WINDAS, SKYNET, AERONET, NIED Ka-band radars, All-sky cameras, BSRN, GEBA

Ka radars: T. Ohigashi-san's talk on Day 5 All-sky cameras : T. Nakajima-san's talk on Day 3


BSRN: A. Yamauchi-san's talk on Day 4

SAVERNET: J. Yoshitaka-san's talk on Day 5

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

WINDAS

JMA wind profiler network

Y. Ohno-san's talks on Day 5 H. Okamoto-san's talk on Day 2

Campaigns

HALO airborne campaign

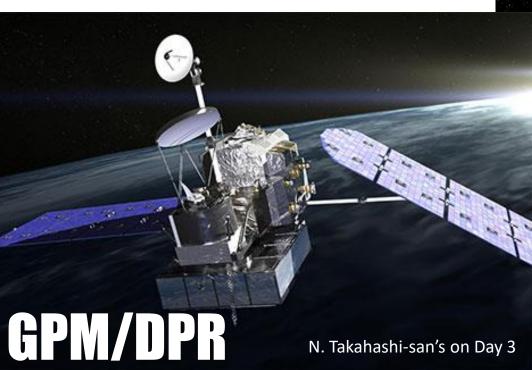
Collaboration with DLR. EarthCARE-like airborne campaign EC-TOOC is planned with HALO aircraft (High Altitude and Long Range Research Aircraft)

Silke Gross-san's talk on Day 4

Koganei Validation Super Site

High sensitivity doppler cloud radar and scanning doppler cloud radar, wind profiler, doppler lidars, HSRL, MFMSPL, microwave radiometer, all-sky camera, etc.

> H. Okamoto-san's talk on Day5 H. Horie-san's talk on Day 4



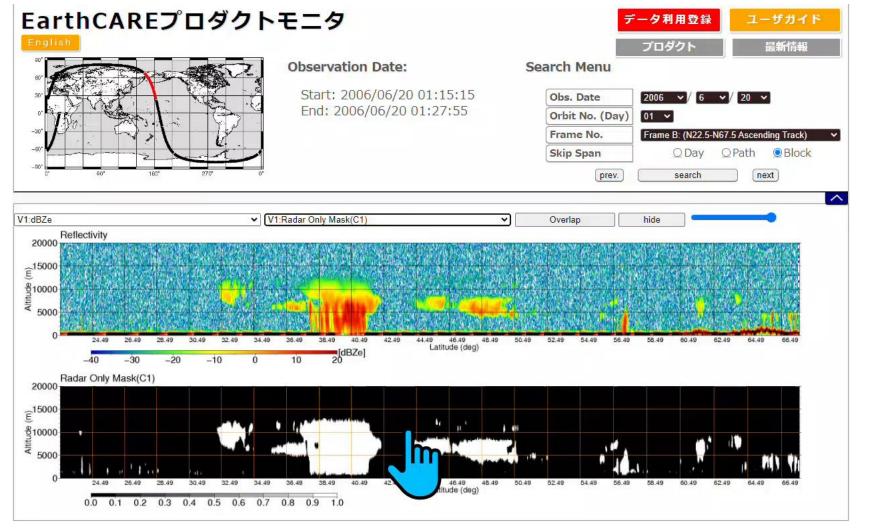
Correlative data exchange, matchup dataset creation, LL intake, validation tools heritage, etc.

DPR is Dual-frequency Precipitation Radar, Ka- and Ku-bands.

SGLI is multispectral imager with 19 channels, 250m resolution, especially for MSI product.

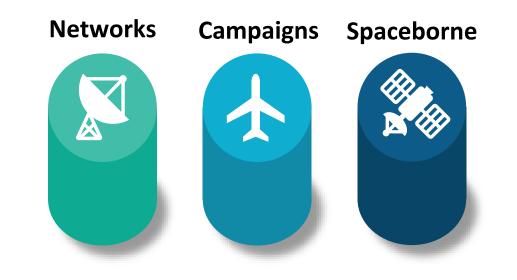
Others: A-Train, Aeolus, Himawari

Web Pages/Tools Development


 We are developing several web pages/tools. The right is prototype of <u>EarthCARE Product Monitor</u> (Quick Look). English page is also under development and will be opened in public.

- ✓ EarthCARE product monitor (Quick Look)
- ✓ EarthCARE Orbit Prediction
- ✓ EarthCARE Orbit Search
- ✓ JAXA EarthCARE Validation portal
- ✓ Validation Data Archive System (VDAS)
- ✓ Validation Matchup Web

AXA


·eesa

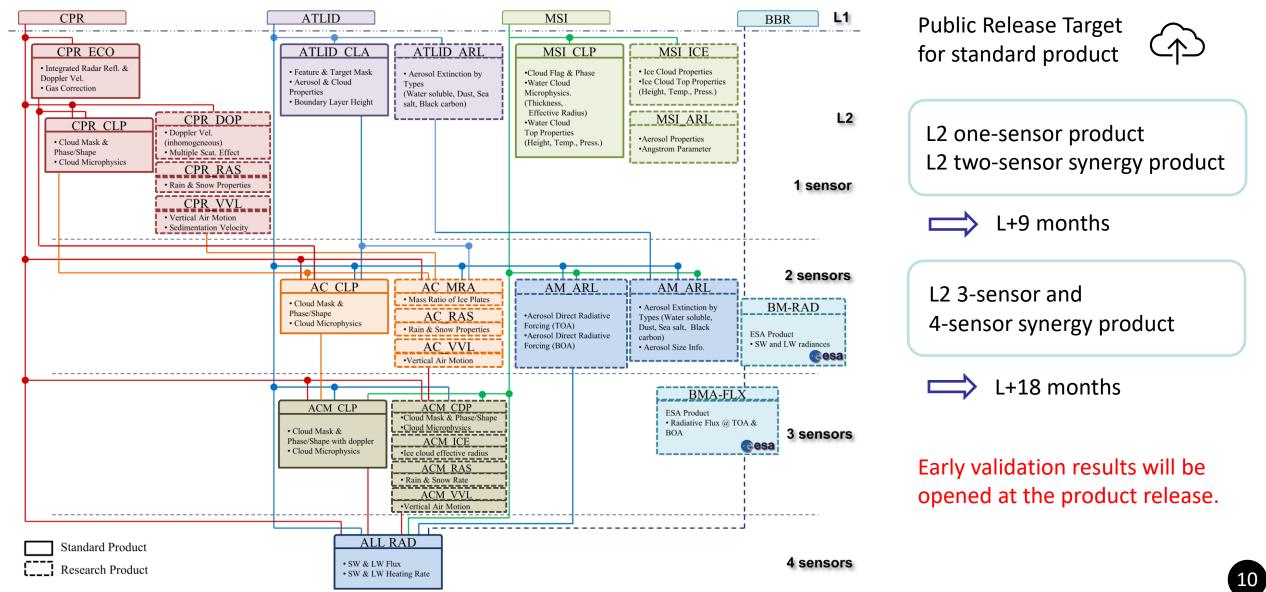
ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Summary and Final Remark

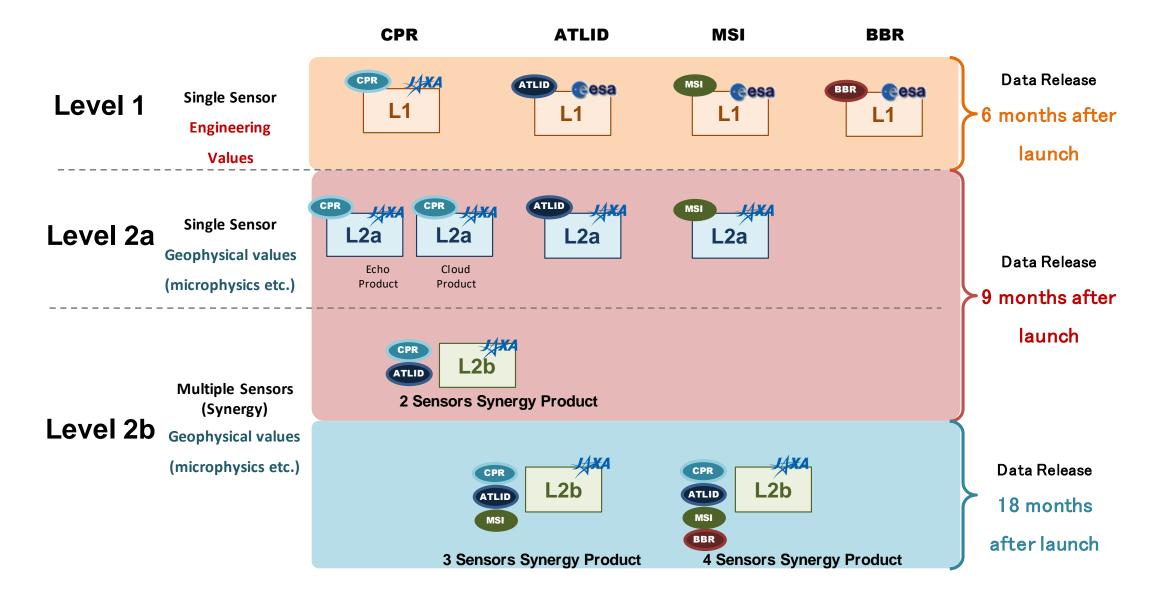
- To fully validate the EarthCARE products which produced in the complicated production model, JAXA validation team detailed validation method for JAXA EarthCARE products which can be summarized as the three pillars.
- Early validation results will be opened when product public release which is scheduled for standard product as
 - L2 one-sensor and two-sensor product: L+9 months
 - L2 3-sensor and 4-sensor product: L+18 months
- When product version-up, the latest results of validation is also opened in public.
- EarthCARE product validation is highly challenging, so we believe collaboration between validation teams is indispensable, hope the WS helps fostering collaboration internationally, especially between European and Japanese teams.

·eesa

Backups


ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

JAXA Production Model and Product Release



EarthCARE JAXA L2 Production Model

Product Release and Early Validation Result

Early validation results will be opened at the product release.

JAXA EarthCARE Validation Implementation Plan Document

List of JAXA standard products

Product Name	Parameter	Required accuracy		
		Release	Standard	Target
CPR One- sensor Echo Product	Integrated Radar Reflectivity Factor	_	_	—
	Integrated Doppler Velocity	_	≦1.3m/s	<0.2m/s
	Gas Correction Factor		—	_
	Cloud Mask	±30%	±10%	±5%
	Cloud Particle Type	±100%	± 50%	±20%
	Liquid Water Content	_	±100%	±50%
CPR One-	Ice Water Content	_	-	—
sensor Cloud Product	Effective Radius of Liquid Water Cloud	_	_	_
	Effective Radius of Ice Water Cloud	_	_	_
	Optical Thickness	_	±100%	±50%
	Cloud Mask	-		—
	Cloud Particle Type	_		_
CPR-ATLID	Liquid Water Content	—		±20%
Synergy Cloud	Ice Water Content	—	Root mean	±30%
Product / CPR-ATLID- MSI Synergy	Effective Radius of Liquid Water Cloud	_	square of errors of	±2μm
	Effective Radius of Ice Water Cloud	_	one sensor	_
Cloud Product	Optical Thickness	_		_
	Liquid Water Path			_
	Ice Water Path	_		_

Product Name	Damanatan	Required accuracy		
	Parameter	Release	Standard	Target
MSI One-	Cloud Flag	$\pm15\%_{(\text{Ocean})}$	±15%	±10%
		$\pm 20\%$ (Land)	- 10%	
	Cloud Phase	$\pm 15\%$ (Ocean)	±15%	±10%
		$\pm 20\%$ (Land)	- 1570	
	Optical Thickness of Liquid Water	±10%	±100%	±50%
sensor Cloud	Cloud	- 1070	(as LWC)	(as LWC)
Product	Effective Radius of Liquid Cloud	±30%	±100%	±50%
	(1.6/2.2 µ m)		(as LWC)	(as LWC)
	Cloud Top Temperature	±1K	±3K	±1.5K
	Cloud Top Pressure			—
	Cloud Top Height		—	—
	Feature Mask	±100%	±40%	±10%
	Target Mask	±100%	±40%	±10%
	Extinction Coeff.	$\pm 50\%$ (Cloud)	$\pm 30\%$ (Cloud)	$\pm 15\%(\text{Cloud})$
		±60%	±40%	±20%
ATLID One-		(Aerosol)	(Aerosol)	(Aerosol)
sensor Cloud	Backscat. Coeff.	±90%	±70%	±50%
and Aerosol Product	Lidar Ratio	$\pm140\%_{(\text{Cloud})}$	$\pm100\%_{(\text{Cloud})}$	$\pm 65\%$ (Cloud)
		±150%	±110%	±70%
		(Aerosol)	(Aerosol)	(Aerosol)
	Depolarization Ratio	±150%	±130%	±100%
	Planetary Boundary	±500m	±300m	±100m
	Layer Height	± 500m		
Four Sensors	Radiative Flux (SW/LW)		±25 W/m2	± 10 W/m2
Synergy			- 20 vv/m2	- 10 vv/m2
Radiation	Radiative Heating Rate (SW/LW)		_	-

JAXA EarthCARE Validation Implementation Plan Document

Correlative data for each JAXA EarthCARE standard product is summarized in the table below. ۲

Product name	Main parameters	Correlative data
CPR One-sensor Echo Product	Integrated radar reflectivity factor, integrated doppler velocity	NICT Koganei composite observation, WINDAS, NIED Ka-band radars, CloudSat (climatology), DLR HALO
CPR One-sensor/ CPR-ATLID Synergy/ CPR-ATLID-MSI Synergy Cloud Product	Cloud mask, cloud particle type, liquid water content, ice water content, effective radius of liquid/ice water cloud, and optical thickness, liquid water path, ice water path	NICT Koganei composite observation, NIED Ka- band radars, A-Train (climatology), DLR HALO, Microwave radiometer
ATLID One-sensor Cloud and Aerosol Product	Feature mask, target mask, extinction coefficient, backscatter coefficient, lidar ratio, depolarization ratio, and planetary boundary layer height	AD-Net, SAVERNET, SKYNET, AERONET, CALIPSO (climatology), Aeolus
MSI One-sensor Cloud Product	Cloud flag, cloud phase, optical thickness, effective radius, cloud top temperature, cloud top pressure, and cloud top height	All-sky camera, GCOM-C, Himawari, BSRN, Sky radiometer, Microwave radiometer
Four Sensors Synergy Radiation Budget Product	SW/LW radiative flux and SW/LW radiative heating rate	BSRN, GEBA, CERES, BBR, A-Train (climatology)

JAXA EarthCARE Validation Implementation Plan Document

Geolocations of ground-base \bullet instruments for validation

Google MyMap link

https://www.google.com/maps/d/edit?mid=1KfijbgxtNQwMTacq0Ec0E5X1hEMylg T&usp=share link

Campaigns

Ground campaign provides multisensor detailed evaluations, and airborne campaign abundant number of matchup data in early phase

Networks

Long-term ground observation networks provide detailed validations

Spaceborne

Satellite sensors provide global evaluations and large amount of matchup data

