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Many published studies reported unprecedented reductions in NO2 tropospheric vertical column densities over 

the world’s most populated cities during the 2020 COVID-19 lockdowns.

In estimating how much of the decline was due to a reduction in anthropogenic sources, there were two 

important sources of uncertainty in the satellite retrievals that were difficult to account for early on:

1) A priori NO2 profiles used in the satellite retrievals were not adjusted for the lower anthropogenic 

emissions observed during the lockdowns

2) Meteorological variability in some cases reduced the apparent decline in anthropogenic emissions and in 

other cases augmented it



GEOS GMI is a full (tropospheric and stratospheric) chemistry CTM run in replay mode, 

which is constrained by assimilated 3-hr averaged meteorological fields from MERRA-2 

[Orbe et al., 2017]. 

Some key features:

• Simulation run at 0.25º longitude x 0.25º latitude resolution globally (~25 km x 25 km)

• Provides 72-layer a priori NO2 and temperature profiles 

• Swath simulator: samples the same longitude, latitude, and time as the measurement

GEOS Global Modeling Initiative (GMI)



We estimated the mean reductions in TROPOMI Tropospheric NO2 columns during the 2020 

lockdowns by comparing satellite retrievals in 2020 to the same period in 2019. We selected 36 

megacities from around the world and considered a 1º x 1º region for two lockdown periods: 

1) January 23 to April 1: All seven selected megacities in China 

2) March 17 to June 1:    All other cities

To account for the 1) changes in the NO2 anthropogenic emission profiles during the 2020 

lockdowns and 2) the effects meteorological variability, we produced three GMI simulations:

• Simulation 1: 2019 with 2019 emissions and 2019 meteorology 

• Simulation 2: 2020 with COVID-19 adjusted emissions (Forster et al., Nature Climate 

Change, 2020)

• Simulation 3: 2020BAU with business-as-usual 2019 emissions and 2020 meteorology 

Our Approach



• Use the GMI model to disentangle the meteorological and natural emission variability from 

the anthropogenic emissions in Tropospheric VCDs; 

❖ Anthropogenic Emissions:   Δ𝑁𝑂2𝐺𝑀𝐼,𝑒𝑚𝑖𝑠 = 𝑇𝑉𝐶𝐷𝐺𝑀𝐼 2020 − 𝑇𝑉𝐶𝐷𝐺𝑀𝐼 [2020𝐵𝐴𝑈]

❖ Meteorological Variability: Δ𝑁𝑂2𝐺𝑀𝐼,𝑚𝑒𝑡 = 𝑇𝑉𝐶𝐷𝐺𝑀𝐼[2020BAU] − 𝑇𝑉𝐶𝐷𝐺𝑀𝐼[2019]

• Estimate the total reduction (% relative to 2019) in mean TROPOMI tropospheric VCDs 

during the study period using GMI a priori NO2 profiles adjusted for the lockdowns and 

corrected for meteorological variability

❖ Change in NO2 emissions, including meteorological and natural emission variability:  

Δ𝑁𝑂2𝑇𝑜𝑡 = 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[2020] − 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[2019]

❖ Inferred change in TROPOMI tropospheric NO2 columns due to anthropogenic NO2 emissions only 

(accounting for meteorology):

Δ𝑁𝑂2𝑆𝑎𝑡,𝑒𝑚𝑖𝑠 = Δ𝑁𝑂2𝑇𝑜𝑡 − Δ𝑁𝑂2𝐺𝑀𝐼,𝑚𝑒𝑡

Methodology



GMI a Priori NO2 and dNO2 profiles for 2019, 2020 and 2020BAU

• In the upper two panels: 

❖ The 2020 NO2 profile shows reduced 

lockdown emissions relative to 2019. 

❖ The 2020BAU profile is affected by 

the 2020 meteorology and the 2019 

emissions

• In the lower two panels:

❖ Anthropogenic emissions display a 

monotonic decline through the lower 

troposphere (2020-2020BAU)

❖ Meteorological variability changes 

sign in the lower boundary layer near 

the surface (2020BAU-2019)
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Change in GMI Tropospheric NO2 Columns 2020-2019
March 17-June 1 

• Large reductions in anthropogenic 

emissions around urban areas (blue)

• In the GMI total change, there are 

some positive ΔNO2 regions (red). 

These regions were affected by 

meteorological and natural emission 

variability

❖ Biomass burning in South 

America

❖ Natural emission variability in the 

central US

❖ Meteorological variability in 

Europe and India
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The NASA NO2 Algorithm Adapted for TROPOMI

• Used NO2 slant column densities (SCD) in Version 2.3.1 (S5P_PAL ) 

• Air mass factors (AMF) were calculated using v. 4.0 of the NASA NO2 algorithm:

❖ GLER – derived from MODIS data (MODIS BRDF/Albedo Product MCD43), 

accounts for anisotropic variations caused by bidirectional reflectance 

distribution function (BRDF) effects that vary with sun-satellite geometry and 

surface characteristics (see Wenhan Qin’s poster)

❖ Fresco – re-calculate Fresco cloud parameters using GLER data for NO2 spectral 

window (440 nm) to correct for the effect of surface reflectivity

❖ Daily GMI: NO2 profiles, temperature profiles, surface and tropopause pressures

• Stratosphere-Troposphere separation — data driven approach (Buscela et al., 2013) 

• Re-gridded data at 0.05º longitude x 0.05º latitude for the TROPOMI and GMI 

(qa_value > 0.75)
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Summary of TROPOMI and GMI NO2

Reductions for 22 Selected Cities

• TROPOMI and GMI yield consistent results with respect to the 

change in Tropospheric VCDs but some larger differences exist

• Meteorological variability was significant for many cities

❖ The NO2 reductions in anthropogenic emissions for five of 

the Chinese cities in the study was much greater than 

originally thought

❖ In other cases, the net reductions were notably less due to 

meteorology, e.g., New Delhi

• Retrieval errors (RE) incurred in using BAU a priori files were 

systematically negative and contributed as much as ~10% error

❖ RE: RE𝑆𝑎𝑡 = 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[2020] − 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[2020BAU]

• Sampling biases (SB) incurred as a result of selective sampling 

(qa_value > 0.7) accounted for up to 10% error

❖ SB: 𝑆𝐵𝐺𝑀𝐼 = 𝑇𝑉𝐶𝐷𝐺𝑀𝐼,𝑇𝐴𝑙𝑙 − 𝑇𝑉𝐶𝐷𝐺𝑀𝐼,𝑇𝑆𝑢𝑏
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Conclusions

• For 36 megacities, we estimated NO2 reductions in the TROPOMI tropospheric 

VCD columns during the COVID-19 lockdown periods by using three GMI 

simulations to separate the anthropogenic emissions from the meteorological and 

natural emission variability

• The effects of meteorological variability significantly impacted the mean 

estimates for many of the selected cities: Meteorological effects were non-

uniformly distributed within the study region and ranged between -40.5 % 

(Chennai) and 15% (Beijing)

• We found that when using the BAU NO2 GMI profile information in place of 

lockdown-corrected emissions, the errors were systematically negative and 

ranged from -1.4%  (Seoul) to -11.0% (Mumbai)

• Sampling Biases due to selective sampling were randomly distributed around 

zero and ranged between ±10%
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Satellite retrieval error represents the differences in the two time series plots

Satellite Retrieval Errors

RE= -7.5% RE= -6.8%

❖ Retrieval error: RE𝑆𝑎𝑡 = 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[2020] − 𝑇𝑉𝐶𝐷𝑆𝑎𝑡[BAU]


