

Decoupling the Effects of Anthropogenic Emission Reductions from the Meteorology and Natural Emissions in TROPOMI NO₂ Retrievals During the 2020 COVID-19 Lockdowns

Brad Fisher, Lok Lamsal, Zach Fasnacht, Luke Oman, Sungyeon Choi, Wenhan Qin, Eun-Su Yang, Joanna Joiner and Nickolay Krotkov Many published studies reported unprecedented reductions in NO_2 tropospheric vertical column densities over the world's most populated cities during the 2020 COVID-19 lockdowns.

In estimating how much of the decline was due to a reduction in anthropogenic sources, there were two important sources of uncertainty in the satellite retrievals that were difficult to account for early on:

1) A priori NO₂ profiles used in the satellite retrievals were not adjusted for the lower anthropogenic emissions observed during the lockdowns

2) Meteorological variability in some cases reduced the apparent decline in anthropogenic emissions and in other cases augmented it

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL089269 Disentangling the Impact of the COVID-19 Lockdowns on Urban NO₂ From Natural Variability

Special Section: The COVID-19 pandemic: Linking health. society and Daniel L. Goldberg^{1,2} (D), Susan C. Anenberg¹ (D), Debora Griffin³ (D), Chris A. McLinden³ (D), Zifeng Lu² (D), and David G. Streets² (D)

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL087978 Impact of Coronavirus Outbreak on NO₂ Pollution Assessed Using TROPOMI and OMI Observations

Special Section: The COVID-19 pandemic: linking health society and M. Bauwens¹, S. Compernolle¹, T. Stavrakou¹, J.-F. Müller¹, J. van Gent¹, H. Eskes², P. F. Levelt^{2,3}, R. van der A², J. P. Veefkind², J. Vlietinck¹, H. Yu¹, and C. Zehner⁴

JGR Atmospheres

RESEARCH ARTICLE

10.1029/2021JD035440

Key Points:

 During the COVID-19 lockdown period, NO₂ concentrations decreased and O₃ concentrations increased in eight German cities
 The degree of NO₂ saturation of

Tropospheric NO₂ and O₃ Response to COVID-19 Lockdown Restrictions at the National and Urban Scales in Germany

Vigneshkumar Balamurugan¹, ¹, Jia Chen¹, ¹, Zhen Qu², ¹, Xiao Bi¹, Johannes Gensheimer¹, Ankit Shekhar³, ¹, Shrutilipi Bhattacharjee⁴, and Frank N. Keutsch^{2,5}, ¹

Quantifying urban, industrial, and background changes in NO₂ during the COVID-19 lockdown period based on TROPOMI satellite observations

Vitali Fioletov¹, Chris A. McLinden¹, Debora Griffin¹, Nickolay Krotkov², Fei Liu², and Henk Eskes³

¹Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada ²Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ³Royal Netherlands Meteorological Institute, De Bilt, the Netherlands

SCIENCE ADVANCES | RESEARCH ARTICLE

CORONAVIRUS

Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19

Fei Liu^{1,2}*, Aaron Page³, Sarah A. Strode^{1,2}, Yasuko Yoshida^{2,4}, Sungyeon Choi^{2,4}, Bo Zheng⁵, Lok N. Lamsal^{1,2}, Can Li^{2,6}, Nickolay A. Krotkov², Henk Eskes⁷, Ronald van der A^{7,8}, Pepijn Veefkind^{7,9}, Pieternel F. Levelt^{7,9}, Oliver P. Hauser^{10†}, Joanna Joiner^{2†}

GEOS Global Modeling Initiative (GMI)

GEOS GMI is a full (tropospheric and stratospheric) chemistry CTM run in replay mode, which is constrained by assimilated 3-hr averaged meteorological fields from MERRA-2 [*Orbe et al.*, 2017].

Some key features:

- Simulation run at 0.25° longitude x 0.25° latitude resolution globally (~25 km x 25 km)
- Provides 72-layer a priori NO_2 and temperature profiles
- Swath simulator: samples the same longitude, latitude, and time as the measurement

Our Approach

We estimated the mean reductions in TROPOMI Tropospheric NO_2 columns during the 2020 lockdowns by comparing satellite retrievals in 2020 to the same period in 2019. We selected 36 megacities from around the world and considered a 1° x 1° region for two lockdown periods:

- 1) January 23 to April 1: All seven selected megacities in China
- 2) March 17 to June 1: All other cities

To account for the 1) changes in the NO_2 anthropogenic emission profiles during the 2020 lockdowns and 2) the effects meteorological variability, we produced three GMI simulations:

- Simulation 1: **2019** with 2019 emissions and 2019 meteorology
- Simulation 2: **2020** with COVID-19 adjusted emissions (Forster et al., *Nature Climate Change*, 2020)
- Simulation 3: **2020BAU** with business-as-usual 2019 emissions and 2020 meteorology

Methodology

- Use the GMI model to disentangle the meteorological and natural emission variability from the anthropogenic emissions in Tropospheric VCDs;
 - ♦ Anthropogenic Emissions: $\overline{\Delta NO2}_{GMI,emis} = \overline{TVCD}_{GMI}[2020] \overline{TVCD}_{GMI}[2020BAU]$
 - Meteorological Variability: $\overline{\Delta NO2}_{GMI,met} = \overline{TVCD}_{GMI}[2020BAU] \overline{TVCD}_{GMI}[2019]$
- Estimate the total reduction (% relative to 2019) in mean TROPOMI tropospheric VCDs during the study period using GMI a priori NO₂ profiles adjusted for the lockdowns and corrected for meteorological variability
 - \diamond Change in NO₂ emissions, including meteorological and natural emission variability:

 $\overline{\Delta NO2}_{Tot} = \overline{TVCD}_{Sat}[2020] - \overline{TVCD}_{Sat}[2019]$

• Inferred change in TROPOMI tropospheric NO_2 columns due to anthropogenic NO_2 emissions only (accounting for meteorology):

$$\overline{\Delta NO2}_{Sat,emis} = \overline{\Delta NO2}_{Tot} - \overline{\Delta NO2}_{GMI,met}$$

GMI a Priori NO₂ and dNO_2 profiles for 2019, 2020 and 2020BAU

- In the upper two panels:
 - The 2020 NO₂ profile shows reduced lockdown emissions relative to 2019.
 - The 2020BAU profile is affected by the 2020 meteorology and the 2019 emissions
- In the lower two panels:
 - Anthropogenic emissions display a monotonic decline through the lower troposphere (2020-2020BAU)
 - Meteorological variability changes sign in the lower boundary layer near the surface (2020BAU-2019)

Change in GMI Tropospheric NO₂ Columns 2020-2019

- Large reductions in anthropogenic emissions around urban areas (blue)
- In the GMI total change, there are some positive ΔNO₂ regions (red). These regions were affected by meteorological and natural emission variability
 - Biomass burning in South America
 - Natural emission variability in the central US
 - Meteorological variability in Europe and India

The NASA NO₂ Algorithm Adapted for TROPOMI

- Used NO₂ slant column densities (SCD) in Version 2.3.1 (S5P_PAL)
- Air mass factors (AMF) were calculated using v. 4.0 of the NASA NO₂ algorithm:
 - GLER derived from MODIS data (MODIS BRDF/Albedo Product MCD43), accounts for anisotropic variations caused by bidirectional reflectance distribution function (BRDF) effects that vary with sun-satellite geometry and surface characteristics (see Wenhan Qin's poster)
 - Fresco re-calculate Fresco cloud parameters using GLER data for NO₂ spectral window (440 nm) to correct for the effect of surface reflectivity
 - ✤ Daily GMI: NO₂ profiles, temperature profiles, surface and tropopause pressures
- Stratosphere-Troposphere separation data driven approach (Buscela et al., 2013)
- Re-gridded data at 0.05° longitude x 0.05° latitude for the TROPOMI and GMI (qa_value > 0.75)

Summary of TROPOMI and GMI NO₂ Reductions for 22 Selected Cities

- TROPOMI and GMI yield consistent results with respect to the change in Tropospheric VCDs but some larger differences exist
- Meteorological variability was significant for many cities
 - The NO₂ reductions in anthropogenic emissions for five of the Chinese cities in the study was much greater than originally thought
 - In other cases, the net reductions were notably less due to meteorology, e.g., New Delhi
- Retrieval errors (RE) incurred in using BAU a priori files were systematically negative and contributed as much as ~10% error
 - $\bullet \quad \text{RE: } \overline{\text{RE}}_{Sat} = \overline{TVCD}_{Sat}[2020] \overline{TVCD}_{Sat}[2020BAU]$
- Sampling biases (SB) incurred as a result of selective sampling (qa_value > 0.7) accounted for up to 10% error
 SB: SB_{GMI} = TVCD_{GMI,TAU} TVCD_{GMI,TSub}

City	Total Change in TropVCD (incl. Met)		Change in Anthropogenic TronVCD		MET	RE	SB
	TROP %	GMI %	TROP %	GMI %	GMI %	TROP %	GMI %
Tokyo	-18.2	-25.9	-15.1	-22.8	-3.1	-3.5	-3.9
New York City	-31.5	-32.8	-30.2	-31.5	-1.3	-7.5	1.0
New Delhi	-28.2	-36.9	-14.7	-23.4	-13.5	-4.7	1.6
Lima	-52.0	-29.4	-49.9	-27.3	-2.1	-4.5	1.4
Moscow	-20.6	-32.7	-6.7	-18.8	-13.9	-2.9	1.0
Lagos	-17.0	4.0	-29.3	-8.3	12.3	-4.9	-6.9
Cairo	-11.6	-28.5	-11.8	-28.7	0.2	-6.3	0.6
Kolkata	-22.3	-28.3	-28.3	-34.3	6.0	-10.6	-2.0
Paris	-49.6	-52.4	-44.9	-47.7	-4.7	-6.8	1.7
Seoul	-26.6	-21.4	-17.3	-12.1	-9.3	-1.4	2.7
Mexico City	-25.7	-35.0	-13.8	-23.1	-11.9	-7.0	1.1
Istanbul	-37.9	-27.2	-37.4	-26.7	-0.5	-6.9	-1.8
Manila	-34.5	-27.6	-27.0	-20.1	-7.5	-10.3	5.1
Kinshasa	6.9	13.8	-7.6	-0.7	14.5	-1.6	-6.3
Lahore	-21.2	-33.0	2.6	-9.2	-23.8	-3.1	-1.9
Tehran	-28.3	-39.6	-26.8	-38.1	-1.5	-4.3	1.0
Chongqing	-7.0	-19.8	-21.0	-33.8	14.0	-3.6	-4.7
Shanghai	-44.4	-27.5	-51.5	-34.6	7.1	-1.7	4.7
Wuhan	-53.1	-29.0	-64.1	-40.0	11.0	-2.6	-2.3
Beijing	-32.1	-21.5	-46.5	-35.9	14.4	-3.5	-8.2
Tianjin	-28.0	-21.6	-41.5	-35.1	13.5	-2.2	-10.9
Guangzhou	-44.0	-36.5	-32.6	-25.1	-11.4	-2.1	10.1

Statistical Summary: ΔNO_2 and Errors

Conclusions

- For 36 megacities, we estimated NO₂ reductions in the TROPOMI tropospheric VCD columns during the COVID-19 lockdown periods by using three GMI simulations to separate the anthropogenic emissions from the meteorological and natural emission variability
- The effects of meteorological variability significantly impacted the mean estimates for many of the selected cities: Meteorological effects were non-uniformly distributed within the study region and ranged between -40.5 % (Chennai) and 15% (Beijing)
- We found that when using the BAU NO₂ GMI profile information in place of lockdown-corrected emissions, the errors were systematically negative and ranged from -1.4% (Seoul) to -11.0% (Mumbai)
- Sampling Biases due to selective sampling were randomly distributed around zero and ranged between ±10%

Backup Slides

Satellite Retrieval Errors

♦ Retrieval error: $\overline{RE}_{Sat} = \overline{TVCD}_{Sat}[2020] - \overline{TVCD}_{Sat}[BAU]$

Satellite retrieval error represents the differences in the two time series plots