

Impact of Spectroscopy on CH₄ Total Column Retrievals from Sentinel-5P/TROPOMI in the Short-Wave Infrared

Hochstaffl, Philipp¹ and F. Schreier¹

¹DLR — German Aerospace Center, Remote Sensing Technology Institute, Oberpfaffenhofen, GERMANY

GHG Session / Poster 61

Introduction

Impact on CH₄ Spectrum

- Methane (CH_4) strongly affects the global climate
- Short-Wave IR spectra to infer molecular concentrations

Accurate modeling of molecular absorption mandatory

BIRRA — Beer InfraRed Retrieval Algorithm

Nonlinear least squares (NLS):
$$\min_{\boldsymbol{X}} \|\boldsymbol{Y} - \boldsymbol{F}(\boldsymbol{X})\|^2$$

$$\boldsymbol{F}(\boldsymbol{X}) = r(\nu)/\pi \cos \theta I_{sun}(\nu) \exp \left[-\sum_{m} \alpha_m \tau_m(\nu)\right] \otimes S(\nu, \gamma, ...) + b$$
$$\tau_m \text{ molec optical depth; } S \text{ ISRF; } \theta \text{ SZA; } b \text{ baseline}$$

 $\boldsymbol{x} \in (\boldsymbol{r}, \boldsymbol{b}, \boldsymbol{\alpha}, \gamma, \delta, \dots).$

- BIRRA infers information from absorption features [2, 3]
- State vector x contains geophysical parameters
- Py4CAtS line-by-line forward model based on GARLIC [6]
- BIRRA was originally developed for SCIAMACHY nadir CO and CH₄

SEOM-AS — Improved Atmospheric Spectroscopy

Fig. 1: (Left) CH_4 absorption cross sections for various line profiles at 330 hPa and 243 K computed with SEOM—IAS line data.

(Center&Right) The effect of line-mixing on molecular cross sections.

Note the dependence on relative line strengths of neighboring lines [5].

Impact on CH₄ Retrieval

Fig. 2: CH₄ columns (left) over Amazonia in orbit 9553 along with

- Spectroscopic database for TROPOMI around 2.3 μ m [1]
- New line positions, intensities, broadening parameters
- Additional 'beyond Voigt' line parameters
- Speed-dependent Rautian profile + line-mixing (SDRM)

gas	data	# lines	$S \left[\mathrm{cm}^{-1} / \mathrm{molec} \mathrm{cm}^{2} \right]$	$\gamma^{(0)}_{\mathrm{air}}[\mathrm{cm}^{-1}]$	п	$\gamma^{(2)}_{\mathrm{air}}[\mathrm{cm}^{-1}]$	$v_{\rm vc}$ [cm ⁻¹]
CH ₄	SEOM H16 G15	6205 8375 7213	$\begin{array}{l} 6.7 \cdot 10^{-27} - 5.5 \cdot 10^{-21} \\ 1.0 \cdot 10^{-29} - 5.5 \cdot 10^{-21} \\ 9.5 \cdot 10^{-28} - 5.4 \cdot 10^{-21} \end{array}$	0.019 - 0.182 0.034 - 0.077 0.034 - 0.077	0.19 - 1.82 0.67 - 0.77 0.46 - 0.97	0.008405(610)	0.00911(65)
H ₂ O	SEOM H16 G15	1177 1197 1101	$\begin{array}{c} 1.4 \cdot 10^{-30} - 2.2 \cdot 10^{-23} \\ 1.0 \cdot 10^{-32} - 2.2 \cdot 10^{-23} \\ 8.4 \cdot 10^{-30} - 2.2 \cdot 10^{-23} \end{array}$	0.004 - 0.141 0.004 - 0.109 0.004 - 0.096	0.31 - 1.02 0.32 - 0.73 0.32 - 0.69	0.007197(35)	0.01083(12)
CO	SEOM H16 G15	110 110 160	$\begin{array}{c} 1.0 \cdot 10^{-31} - 3.5 \cdot 10^{-21} \\ 1.0 \cdot 10^{-31} - 3.5 \cdot 10^{-21} \\ 1.1 \cdot 10^{-36} - 3.6 \cdot 10^{-21} \end{array}$	0.042 - 0.081 0.042 - 0.081 0.040 - 0.079	0.67 – 0.79 0.67 – 0.79 0.69	0.00607(10)	0.0047(10)

Table: Spectroscopic line data for the 2311–2352 nm interval. The last two columns show the mean of the 'beyond Voigt' air-broadening speed-dependence and Dicke narrowing parameters. The number of non-zero values is indicated in the parentheses [4].

Level 1 \rightarrow 2 Processing

Input data required for the retrieval

errors (right) for different spectroscopic line lists and models [4].

Fig. 3: CH₄ retrieved in orbit 7861 over the Sahara region [4].

Beyond SEOM–IAS/SDRM

	meo	dian	me	ean	variance	
	HTM	SDRM	HTM	SDRM	HTM	SDRM
α_{CH_4}	1.0475	1.0485	1.0467	1.0478	0.0157	0.0158
$\alpha_{\rm H_2O}$	1.3450	1.3555	1.3929	1.3945	0.4495	0.4487
$\alpha_{\rm CO}$	0.9566	0.9572	0.9338	0.9344	0.0463	0.0461

Table: Retrieved scaling factors for the Hartmann-Tran (HTM) and SDRM line profiles from TROPOMI measurements in orbit 2923. The partial correlation parameter was manually set in the HTM profile [5].

- S5P radiance and irradiance data
- BDPM and ISRF's
- Spectroscopic line data: SEOM–IAS, HITRAN, GEISA
- Atmospheric data on p, T and specific humidity
- A priori information on molecular concentration profiles
- Terrain elevation from the ETOPO global relief model
- Cloud-mask from VIIRS aboard Suomi-NPP

References:

- [1] M. Birk, G. Wagner, J. Loos, D. Mondelain, and A. Campargue. ESA SEOM-IAS Spectroscopic parameters database $2.3\rm,\mu\ m\ region$ [Data set]. Zenodo, 2017.
- S. Gimeno García, F. Schreier, G. Lichtenberg, and S. Slijkhuis. Near infrared nadir retrieval of vertical column densities: Methodology and application to SCIAMACHY. AMT, 4(12):2633–2657, 2011. doi: 10.5194/amt-4-2633-2011.
- [3] P. Hochstaffl, F. Schreier, G. Lichtenberg, and S. Gimeno García. Validation of Carbon Monoxide Total Column Retrievals from SCIAMACHY Observations with NDACC/TCCON Ground-Based Measurements. RS, 10(2):223, 2018. doi: 10.3390/rs10020223.
- [4] P. Hochstaffl, F. Schreier, M. Birk, G. Wagner, D. G. Feist, J. Notholt, R. Sussmann, and Y. Té. Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI. RS, 12(21):3486, 2020. doi: 10.3390/rs12213486.
- [5] Philipp Hochstaffl. Trace Gas Concentration Retrieval from Short-Wave Infrared Nadir Sounding Spaceborne Spectrometers. PhD thesis, Ludwig-Maximilians-Universität München, January 2022.
- [6] F. Schreier, S. Gimeno García, P. Hochstaffl, and S. Städt. Py4CAtS PYthon for Computational ATmospheric Spectroscopy. Atmosphere, 10(5):262, 2019. doi: 10.3390/atmos10050262.

SENTINEL-5P MISSION: 5 YEARS ANNIVERSARY 10-14 OCTOBER 2022 TAORMINA, ITALY

• • • •