On the location accuracy of deformation zones retrieved from spaceborne SAR image time series

Anja Frost, Martin Bathmann, Dmitrii Murashkin

Anja Frost, DLR, EU Polar Science Week

Sigma Naught [dB]				
11.0 -8.2	-6.3	-5.1	-4.1	-3.3
ce drift vel	locity [m	n/h]		
383 411	1 438	466	494	522

DLR - German Aerospace Center

Team SAR Oceanography Bremen

Development of algorithms to derive **maritime information** from **spaceborne SAR data** in **near real-time** on...

...wind

...oil spills

...sea ice types

3

...sea ice drift

Support of campaigns

Al based sea ice classification

Sentinel-1 acquisition 06/12/2021 11:25 UTC

[1] Z. Zhou et al., IEEE 2020.
[2] Dmitrii Murashkin et al., "Arctic Sea Ice Mapping using Sentinel-1 SAR scenes with a Convolutional Neural Network" IGARSS 2021

Anja Frost, DLR, EU Polar Science Week

Sea ice classification

based on UNET++ CNN^[1, 2]

Basic idea of multitemporal sea ice classification

- Track sea ice from one SAR acquisition to the next and collect more measurements about e.g. a floe
- · Use the collected data jointly to classify the ice
- <u>Needed</u>: Sea ice drift tracking (hintcast) with very high accuracy and high resolution

Sea ice drift tracking using phase correlation

Evaluation of a whole patch

Anja Frost, DLR, EU Polar Science Week

Accuracy based on buoy measurements

TerraSAR-X acqu	uisition						
	[LITC] Incidence angle	Heading angle	Orbit	13 Participal	l	Valid	
03 03 2018 13	·45 42°-34°	246°	desc	A . 1		vand	<u>ג</u>
03.03.2018 15	·19 39°-30°	240 269°	desc	Le Part	1		
03 03 2018 16	·54 34°-42°	293°	asc.				
04 03 2018 13	·28 42°-34°	243°	desc				
04.03.2018 16:	:36 32°-41°	289°	asc.				
05.03.2018 13:	:10 44°-36°	240°	desc				
05.03.2018 14:	:45 39°-30°	265°	desc.		absolute er	ror	
06.03.2018 12:	:53 44°-36°	236°	desc.		[m]		
06.03.2018 17:	:36 36°-44°	305°	asc.		•		
07.03.2018 14:	:11 39°-30°	254°	desc.				
07.03.2018 15:	:45 27°-37°	277°	asc.		120		
08.03.2018 15:	:28 30°-39°	272°	asc.				
08.03.2018 17:	:02 34°-42°	296°	asc.		100		
09.03.2018 15:	:11 39°-30°	269°	desc.		100		
09.03.2018 16:	:45 32°-41°	292°	asc.				
10.03.2018 18:	:02 38°-46°	310°	asc.		80		-
12.03.2018 17:	:28 36°-44°	304°	asc.				
13.03.2018 17:	:11 34°-42°	299°	asc.		60		
14.03.2018 13:	:45 40°-32°	246°	desc.		00		
14.03.2018 15:	:19 37°-27°	266°	desc.				
14.03.2018 16:	:54 30°-39°	287°	asc.		40		-
15.03.2018 13:	:28 41°-32°	242°	desc.		_ (👘		
16.03.2018 13:	:10 42°-34°	238°	desc.		× 8 20	>	
16.03.2018 14:	:45 39°-30°	260°	desc.				
17.03.2018 16:	:02 25°-35°	275°	asc.	(NS SU		
17.03.2018 17:	:36 34°-42°	302°	asc.			•	
20.03.2018 16:	:45 30°-39°	288°	asc.		0		
20.03.2018 18:	:19 38°-46°	312°	asc.				
21.03.2018 16:	:28 27°-37°	289°	asc.		In to a displ	acem	٥r
23.03.2018 17:	:28 34°-42°	304°	asc.			accin	
24.03.2018 17:	:11 32°-41°	300°	asc.		osolute errc	or rang	je
26.03.2018 16:	:36 27°-37°	291°	asc.				

... but drift buoys are usually deployed in the middle of an ice floe

© S.Schwegmann (AWI)

Accuracy in deformation zones (landfast ice boundary)

How can results be improved by processing with way smaller patch sizes?

Original resolution reached. Now, reduce patch size.

Accuracy in deformation zones (landfast ice boundary)

Summary

- Within an ice sheet, sea ice drift can be tracked with very high precision
- Due to the block matching approach, boundaries of different moving ice sheets (i.e. deformation zones) can be misplaced by several kilometers, depending on block size
- First approach: Re-estimation of drift vectors with smaller patch sizes narrows down the deformation zones

Ongoing

- For multitemporal sea ice classification, handle boundaries separately (anyhow, introduce new ice class "deformation zone")
- Separate handling of boundary regions:
 - Interferometric analysis of landfast ice (vs. operational use)
 - Include other approaches for sea ice drift tracking

Knowledge gaps and deficiencies

- lack of in situ data
- free ice floe drift hard to track and predict

Recommondation

- More campaigns to collect in situ data
- Sea ice classification: Creation of open-source high-resolution dataset

Opportunities

- Several large shipping companies could use Northwest passage to save costs, potential for marketable solution
- Large AI models incorporating multiple data sources might increase quality of EO-based sea ice information

Al based sea ice classification morphed into the future

Sentinel-1 acquisition 06/12/2021 11:25 UTC

[1] Z. Zhou et al., IEEE 2020.
[2] Dmitrii Murashkin et al., "Arctic Sea Ice Mapping using Sentinel-1 SAR scenes with a Convolutional Neural Network" IGARSS 2021 Sea ice classification based on UNET++ CNN [1, 2]

First-year ice

Young ice

Rough ice

83°00'N Multi-year ice

Open water (calm)

Open water (rough)

