

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Copernicus Sentinel-2 Data Quality Overview

Valentina Boccia – Sentinel-2 Data Quality and Cal/Val Manager (ESA)

6th S2VT 12th September 2023, @ESA-ESRIN

ESA UNCLASSIFIED - For ESA Official Use Only

🛀 🔶 🔸 THE EUROPEAN SPACE AGENCY

- □ Copernicus Sentinel-2 Data Quality Framework
- □ Copernicus Sentinel-2 Data Quality Status
- □ Copernicus Sentinel-2 GRI
- □ Sentinel-2 Level-2H and Level-2F Pilot Products
- □ Sentinel-2 Work in Progress Activities (S2 L2A Acquatic Layer, DGGS, L1C and L2A RUT)

PROGRAMME OF THE EUROPEAN UNION

co-funded with

opernicus

- □ Sentinel-2 Evolutions under evaluation
- □ Sentinel-2 Collection-1
- □ Parallel Cal/Val Activities (FRM4Veg and SRIX4Veg, Cal/Val Park)
- □ S2VT Some Logistics

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 🔚 🔚 🔤 🐜 🚱 🛌 📲 🖿 🖬 🖬 👘 → THE EUROPEAN SPACE AGENCY

OPT-MPC

Since 4th October 2021 the S2 MPC has been replaced by the

OPT-MPC Optical Mission Performance Cluster

*

3

OPT-MPC

Since 4th October 2021 the S2 MPC has been replaced by the

PROGRAMME OF THE EUROPEAN UNION

OPERNICUS co-funded with

· eesa

OPT-MPC Optical Mission Performance Cluster

S2 Products Perfomance Reporting (1/2)

PROGRAMME OF THE

EUROPEAN UNION

Opernicus co-funded with

🕂 📲 🔚 🔚 🔚 🔚 🔚 🔤 🦛 🚳 🍉 📲 👫 📮 🕂 🔤 📾 🛤 🍁 🔹 The European space agency

S2 Products Perfomance Reporting (2/2)

opernicus

6

S2 Anomaly Database

				ANC	MALIE	S			
түр	e 🗸	CATEGORY	×			SELECT OPTION	V DESC V	Q Search	
ID	TITLE	ТҮРЕ	CATEGORY	CREATION DATE	UPDATE DATE	ІМРАСТ	NRT STATUS	SEVERITY	м
84	Incomplete product on Scihub	Processing anomaly - L1C	recurrent	2023-03-16	2023-04-05		Fixed	minor	(
83	QUALIT_MSK not detecting all missing packets	Processing anomaly - L1C	recurrent	2023-02-13	2023-02-13	528_MSIL1C_20230110T073 159_N0509_R049_T36KYB_2 0230110T092744	Under Investigation	minor	(
82	Corrupted product footprint	Processing anomaly L1C	recurrent	2023-01-31	2023-03-31	52A, M5ILIC, 201601227142 942, N0201, R053, T18CWQ, 201601227144426 52A, M5ILIC, 201601227142 942, N0201, R053, T17FPA,2 01601227144426	Fixed	minor	(
81	4.13 Very low negative reflectances near the edge of the swath	Processing anomaly - L2A	systematic	2023-01-13	2023-01-13	-	Under Investigation	minar	6
80	B02 corrupted in a L1C product but nut in the corresponding L2A	Processing anomaly - L1C	returrent	2023-01-12	2023-03-31	\$28 MSILIC 20221119T083 139 N0400 R021 T37TCL 2 0221119T091634.5AFE \$28 MSIL2A_20221119T083 139 N0400 R021 T37TCL 2 0221119T100525.5AFE	Fixed	major	(
79	Corrupted product MTD file	Processing anomaly - L1C	recurrent	2023-01-06	2023-01-06	528_M5#_1C_20210314T200 529_N0209_R099_T02CNC_2 0210314T212550,5AFE		minor	0
78	Empty manifest file	Processing anomaly - L SC	recurrent	2023-01-06	2023-01-06	528 MSIL1C, 202204151072 609, N0400, R049, T380,KF,2 02204151092327, SAFE 528, MSIL1C, 202204151072 609, N0400, R049, T37NHH, 202204151092327, SAFE		minor	(
77	Geolocation error after collision avoidance mangeovre	On-board anomaly	recurrent	2023-01-04	2023-01-12	-		minor	(

It includes an online query system to allow users to request information on the quality status of a given product through an API.

The query can be performed by:

- **Product**
- List of products
- Sensing orbit number
- Sensing date
- Processing baseline

https://sentinels.copernicus.eu/ca/web /sentinel/user-guides/sentinel-2-msi

Sentinel 2 Document Library

Sentinel-2 Spectral Response Functions (S2-SRF)

This spreadsheet contains the measured spectral responses for each band of the Sentinel-2 MultiSpectral Instrument (MSI) for the different satellite units. Compared to previous issue (3.0), this new version slight changes the central wavelengths for band B02 of S2A and S2B, and band B01 of S2A, along with slight changes of the Full Width Half Maximum (FMWH) for most of the bands.

Download XLS

REFERENCE	COPE-GSEG-EOPG-TN-15-0007
FORMAT	xlsx
ISSUE	3.1
DATE	21 June 2022
AUTHORSHIP	ESA
PAGES	5
KEYWORDS	Sentinel-2 Spectral Response Functions
ТҮРЕ	Technical Document

PROGRAMME OF THE EUROPEAN UNION

8

co-funded with

opernicus

S2 Data Quality Framework

PROGRAMME OF THE EUROPEAN UNION

→ THE EUROPEAN SPACE AGENCY

Sentinel-2 Data: where are we now?

S2 Timeline – Level-1C (TOA)

S2A				S	2B	-	Mar and a state of the state of												6 th S2VT	
								2 nd S2	2VT	3 rd	S2VT	-		4 th S	2VT		5 th S2\	/T		i
	201	5		2016		2	.017		2018	3		2019	2020		202	21	2	022	2023	Ľ
Sentinel-2A																				Ī
Sentinel-2B																				
Processing Baseline (PB)	0 2. 0 0	02 .0 1	02 .0 2	02	2.04		02.05	C)2.06	02	.07	02.08	02.09		03.00	03.01	04	.00	05.09	
	02.0)4																		į.
Product Specification Document (PSD)	1 1. 0 0	12 .0 0	13 .1	13.1	13.2	14	1/14.2	14.3	3			14.4/14.5			14	4.6		1	.4.9	
								i.			i –								11	i_

PROGRAMME OF THE EUROPEAN UNION

*

· e esa

opernicus co-funded with

S2 Timeline – Level-2A (BOA)

S2A		52B	d S2V	т		3rd (\$2\/T				4th S2VT		5th S	S2VT	6 th S2VT	-
	And and			1			52 V I								0 3211	
			20	018				2019		2020	202	1		2022	2023	
Sentinel-2A										· · · · · · · · · · · · · · · · · · ·						
Sentinel-2B																
Processing Baseline (PB)		02. 07	02. 08	02. 09	02. 10	02	.11	02.12	02.13	02.14	03.00	03.01		04.00	05.09	
Product Specification Document (PSD)								14.4/14	5		14	4.6			14.9	

PROGRAMME OF THE EUROPEAN UNION

12

eesa

opernicus co-funded with

S2 Data Products – Major Products Updates

PB 05.09 is currently used systematically since 6th December 2022 and includes:

L1C

• Improvement of quality mask for radiometric saturation

L2A

• Identification of defective pixels from missing instrument source packets in L2A Scene Classification map

L1C ATBD (Algorithm Theoretical Basis Document) v1.1 is publicly available on Sentinel Online (Sentinel-2 Document Library section) since March 2023

https://sentinels.copernicus.eu/documents/247904/446933/Sentinel-2-Level-1-Algorithm-Theoretical-Basis-Document-ATBD.pdf/827fdad1-e3af-96af-e437-964e2aa8c35d?t=1679388210651

L2A ATBD (Algorithm Theoretical Basis Document) v2.10 is publicly available on Sentinel Online (Sentinel-2 Document Library section) online since January 2022 https://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor-v2-10/

Sen2Cor Toolbox v2.11 released on the STEP webpage in December 2022

https://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor-v2-11/

co-funded with

Cesa

PROGRAMME OF THE

EUROPEAN UNION

S2 L2A – CEOS ARD

 $\langle \rangle$

PROGRAMME OF THE EUROPEAN UNION

Since 25th January 2022 Sentinel-2 L2A data are **Analysis Ready Data** according to CEOS ARD Specifications at Threshold Level

CEOS Analysis-Ready Datasets

The following table summarises all of the satellite EO datasets that have been assessed as CEOS Analysis Ready Data (CEOS ARD). DOI links are provided for access, along with links to further information, sample products, and the completed CEOS ARD self-assessment and peer review outcome documents.

Product	CEOS ARD Type	PFS Version	Agency	Mission(s)	Threshold Specification	Targ Specific
Landsat Collection 2	Surface Reflectance	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	6 81%
Landsat Collection 2	Surface Temperature	v5.0	USGS	Landsat 4, 5, 7, 8, 9	● 100%	83%
Sentinel-2 Level-2A	Surface Reflectance	v5.0	ESA	Sentinel-2A, 2B	0 100%	Not asse
EnMAP	Surface Reflectance	v5.0	DLR	EnMAP	100%	Not asse

CEOS ANALYSIS READY DATA

CEOS Analysis Ready Data for Land (CARD4L) are satellite data that have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort and interoperability both through time and with other datasets.

Product Family Specifications

Data collected with multispectral sensors

operating in the thermal infra-red (TIR)

wavelengths. These typically operate with

ground sample distance and resolution in the

order 10-100m.

Read Product Family Specification >>

Surface Reflectance

Data collected with multispectral sensors operating in the VIS/NIR/SWIR wavelengths. These typically operate with ground sample distance and resolution in the order 10-100m however the Specification is not inherently limited to this resolution.

Read Product Family Specification >>

Surface Temperature

Radar Backscatter

Data collected by Synthetic Aperture Radar (SAR) sensors.

Read Product Family Specification >>

→ THE EUROPEAN SPACE AGENCY

S2 GRI : Public Release (1/3)

Since 12th July 2023 the Copernicus Sentinel-2 Global Reference Image (GRI) is available on the Sentinel Online

The following 4 versions of the GRI are made available:

- Multi-Layer Copernicus Sentinel-2 GRI in Level-1B (L1B);
- Multi-Layer Copernicus Sentinel-2 GRI in Level-1C (L1C);
- Copernicus Sentinel-2 GRI as Database of GCPs in L1B;
- Copernicus Sentinel-2 GRI as **Database of GCPs** in **L1C**.

+ related Documentation: • Product Handbook

• Validation Report

Sentinel Online

Home / Missions /

News

Access to the Copernicus Sentinel-2 Global Reference Image (GRI) 12 July 2023

PROGRAMME OF THE

EUROPEAN UNION

f Share 🎔 Tweet 🛛 in Share

We are pleased to inform that the Copernicus Sentinel-2 Global Reference Image (GRI) is no available.

The ESA Ground Segment uses the Copernicus Sentinel-2 GRI in the Sentinel-2 Level-1 processing chain in order to geometrically calibrate the data before distribution to users. Specifically, the GRI is used to improve the absolute geo-location accuracy and the multitemporal co-registration of Sentinel-2 data through a processing step called 'geometric refinement'.

The GRI was initially generated as a set of as-cloud-free-as-possible mono-spectral (central band B04, 10m resolution) SentineI-2 Level-1B products, whose geometrical model had been previously improved. That version is referred as Multi-Layer Copernicus SentineI-2 ORI in L1B and is the one currently used by the ESA Ground Segment to systematically generate the SentineI-2 data:

1. Multi-Layer Copernicus Sentinel-2 GRI in Level-1B;

Starting from the Multi-Layer Copernicus Sentinel-2 GRI in L1B, the following additional three versions of the GRI were generated:

2. Multi-Layer Copernicus Sentinel-2 GRI in Level-1C

Copernicus Sentinel-2 GRI as Database of Ground Control Points (GCPs) in Level-1B;
Copernicus Sentinel-2 GRI as Database of Ground Control Points (GCPs) in Level-1C.

All the four Copernicus Sentinel-2 GRI versions have the same coverage, i.e., land and coastal areas worldwide (except high latitude areas), including most of the islands.

Usage of the Copernicus Sentinel-2 GRI allows to constrain the geometric model of satellite data, i.e., not only for the Sentinel-2 mission but also for other satellite missions generating data up to 50m spatial resolution.

Access to the four versions of the Copernicus Sentinel-2 GRI (i.e., as LTB and LTC Multi-Layer and as LTB and LTC Databases of GCPs) and to the associated documentation (Product Handbooks and Validation Reports) for download is available via the ESA Sentinel Online webpage

Home / Technical Guides / Sentinel-2 MSI / Global Reference Image

Global Reference Image (GRI)

Access to the Copernicus Sentinel-2 Global Reference Image (GRI)

The Copernicus Sentinel-2 Global Reference Image (GRI) was initially generated as a layer of reference composed of Sentinel-2 Level-18 (L1B) images (in sensor frame) covering the whole globe (except high latitudes areas and some small isolated islandd) with highly accurate geolocation information. The images, acquired by the Sentinel-2 mission between 2015 and 2018, use the Sentinel-2 reference band (B04) and are mostly (but not entirely) cloud-free. The GRI covers most emerged land masses and has a global absolute geolocation accuracy better than 6 m.

co-funded with

The geometric refinement of the Copernicus Sentinel-2 imagery relies on the GRI and is part of the Sentinel-2 geometric calibration process, applied worldwide since August 2021. It has highly improved the absolute geolocation and the multi-temporal co-registration of Sentinel-2 products. Indeed, thanks to the geometric refinement using the GRI, all the products inherit the same absolute geolocation performance.

Usage of the Copernicus Sentinel-2 GRI can be extended to other missions than Sentinel-2. In this framework and driven by user's needs, it has been decided to freely give access to the scientific community to the entire GRI. Moreover, in order to facilitate the usage of the GRI, additional versions derived from the original Multi-Layer Copernicus Sentinel-2 GRI in Level-1B have been generated.

Therefore, the following four versions of the GRI are made available:

- Multi-Layer Copernicus Sentinel-2 GRI in Level-1B (L1B);
- Multi-Layer Copernicus Sentinel-2 GRI in Level-1C (L1C)
- Copernicus Sentinel-2 GRI as Database of GCPs in L1B;
- Copernicus Sentinel-2 GRI as Database of GCPs in L1C.

In the Table below the four Copernicus Sentinel-2 GRI versions are provided, along with download access and their corresponding documentation.

Copernicus Se Database of GC	ntinel-2 GRI as Ps in L1C (see §1)	Copernicus Se Database of GC	entinel-2 GRI as Ps in L18, (see §1)
	Product	Handbook	
	Validati	on Report	
Multi-Layer Cope GRI in L1	rnicus Sentinel-2 IC (see §2)	Multi-Layer Cope GRI in L	ernicus Sentinei-2 1B (sec §3)

The versions of the GRI have been generated by using Sentinel-2A and Sentinel-2B data acquired between 2015 and 2018.

S2 GRI : Public Release (2/3)

• Multi-Layer Copernicus Sentinel-2 GRI in Level-1B (L1B)

It is the S2 GRI version currently used by the S2 processor and it is a full repeat cycle dataset of well-localized and as cloud-free as possible mono-spectral (band 4) Sentinel-2 Level-1B products (i.e. in sensor geometry).

PROGRAMME OF THE

co-funded with

• Multi-Layer Copernicus Sentinel-2 GRI in Level-1C (L1C) It is the S2 GRI converted from L1B to L1C geometry. Copernicus Sentinel-2 GRI as Database of GCPs in L1B • Copernicus Sentinel-2 GRI as **Database of GCPs** in **L1C** No Copyright: Free & Open The Multi-Layer S2 GRI might be difficult to use. More for experts Easily identifiable GCPs: crossroad, house corner, isolated and not user friendly. rock, etc. Therefore, the Multi-Layer S2 GRI have been converted into Same accuracy as the current GRI version Databases of GCPs. Perennial & robust to seasonal effects Same performance as achieved by the current GRI version Fully validated Coverage: worldwide Usage of Copernicus DEM @30m

💻 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📰 🚔 🔚 ன 🖓 🛌 📲 🗮 🚥 🚳

S2 GRI : Public Release (3/3)

PROGRAMME OF THE EUROPEAN UNION

OPERAICUS co-funded with

Sentinel Online

Cerca..

Home / Technical Guides / Sentinel-2 MSI / Global Reference Image

Global Reference Image (GRI)

Access to the Copernicus Sentinel-2 Global Reference Image (GRI)

The Copernicus Sentinel-2 Global Reference Image (GRI) was initially generated as a layer of reference composed of Sentinel-2 Level-18 (L1B) images (in sensor frame) covering the whole globe (except high latitudes areas and some small isolated islands) with highly accurate geolocation information. The images, acquired by the Sentinel-2 mission between 2015 and 2018, use the Sentinel-2 reference band (804) and are mostly (but not entirely) cloud-free. The GRI covers most emerged land masses and has a global absolute geolocation accuracy better than 6 m.

The geometric refinement of the Copernicus Sentinel-2 imagery relies on the GRI and is part of the Sentinel-2 geometric calibration process, applied worldwide since August 2021. It has highly improved the absolute geolocation and the multi-temporal co-registration of Sentinel-2 products. Indeed, thanks to the geometric refinement using the GRI, all the products inherit the same absolute geolocation performance.

Usage of the Copernicus Sentinel-2 GRI can be extended to other missions than Sentinel-2. In this framework and driven by user's needs, it has been decided to freely give access to the scientific community to the entire GRI. Moreover, in order to facilitate the usage of the GRI, additional versions derived from the original Multi-Layer Copernicus Sentinel-2 GRI in Level-18 have been generated.

Therefore, the following four versions of the GRI are made available:

- Multi-Layer Copernicus Sentinel-2 GRI in Level-1B (L1B);
- Multi-Layer Copernicus Sentinel-2 GRI in Level-1C (L1C)
- Copernicus Sentinel-2 GRI as Database of GCPs in L1B;
- Copernicus Sentinel-2 GRI as Database of GCPs in L1C.

In the Table below the four Copernicus Sentinel-2 GRI versions are provided, along with

━ ┿ ▮! ≌

+ THE EUROPEAN SPACE AGENCY	Gesa
Copernicus Sentinel-2 GRI as of GCPs in L1B	Database = Source < Streen PLanguage Signation
In Copernicus Sentinel-2 Global Reference Image (S2	GRI)
Description Copernicus Sentinel-2 GRI as Database of GCPs in Level-18	Catalogs (139) (10 min (1 min)
License CC0-1.0	P Filter catalogs by filte
•	GCP_L1B N00 L1B GCPs for N00 latitude.
えんがん	GCP_L18 N01 L18 GCPs for N01 lackade.
	GCP_L18 NO2 L18 GCPs for N02 letitude.
CANTRY (10) CONTINUENCED INVESTIGATION	GCP_L18 N03
Metadata	L18 GCPs for N03 latitude.
General Platform 1. Scrtinel-2A 2. Scrtinel-28	GCP_L18 N04 L18 GCPs for N04 latitude.
Constellati Sentinel-2 on	
Data 1.1 Version	GCP_L18 N05 L18 GCPs for N05 letitude.
Electro-Optical	GCP_L1B N06
Spectral Name: 84 Bands Common Name: red	L18 GCPs for NOS intrude.

+ THE EUROPEAN	SPACE AGENCY	@esa 🛄
Multi-L in L1C	ayer Copernicus Se	
in Copernica	is sentinel-2 Grobal Meterance imag	E (25 CH() T OD T BOWDE I
Descriptic Vulti-Layer Co	011 permicus Sentinel-2 GRI in Level-10	Catalogs (60) (Tree = List
License	CC0-1.0	↓ ³ Effer cataloge by title
•		GRI_LIC T01 UTM zone T01 for GRI_LIC.
	1. A. A.	GRI_LIC TO2 UTM zone TO2 for GRILIC.
	and and and	GRI_LIC TO3 UTM zone T03 for GRLLIC.
	winder) © conversion (value) conve	GRI_LLC T04
Metadata		UTM zone T04 for GRI_L1C.
General Platform	1 Sentinei-JA 2 Sentinei-JB	GRI_LIC TOS
Constellati	Sentirel-2	
Data Version	83	GRI_LIC TOS UTM zone TB6 for GRI_LIC.
Electro-Opti	cal	GRI_LIC T07
Spectral Bends	Name: 84 Common Name: rest	UTM zone T07 for GRUL10.

	a nation of a state training made for	CORI COD CORRECTO
Descriptio Copencia Se Concilia Co	DR Illinei-2 GRI as Datatase of GCPs in Level-1C In Millinei 22 GCP (12	Catalogs 12 Etws Coll 11 Assarding 12 Descarding 27 Filter catalogs by title
+	Cub-10	GCP_L1C N00 L1C BCPs for N00 latitude.
	N 40 V	GCP_L1C N01 L1C GCPs for N01 latitude.
		GCP_L1C NO2 L1C SCPs for NO2 letitude.
Metadata	Install © Oper/Zearthap constants.	GCP_L1C ND3 L1C SCPs for NO3 latitude.
General Platform	1. Sentinel-2A 2. Sentinel-2B	GCP_L1C N04 L1C GCPs for N04 latitude.
Constellati on	Sentinel-2	
		GCP_L1C N05

17

→ THE EUROPEAN SPACE AGENCY

S2 Level-2H and Level-2F Pilot Products

- Harmonisation includes consistent atmospheric corrections, spectral adjustments, BRDF adjustments and re-gridding.
- **Fusion** goes beyond bringing the data to the same spatial resolution.

PROGRAMME OF THE

EUROPEAN UNION

co-funded with

opernicus

S2 Level-2H and Level-2F Pilot Products

- Harmonisation includes consistent atmospheric corrections, spectral adjustments, BRDF adjustments and re-gridding. \checkmark
- **Fusion** goes beyond bringing the data to the same spatial resolution.

ON-GOING STEPS:

- **On-demand production** of L2H and L2F data on the openEO platform.
- BRDF validation using specific DRONEs campaigns (1st campaign already done)

Processor (Sen2Like 4.4) available on GitHub: https://github.com/senbox-org/sen2like

opernicus

PROGRAMME OF THE

EUROPEAN UNION

Product - Solutions -	Open Source - Pricing	Search or jump to	Sign in Sign u			
senbox-org/sen2like	(Ruble	Q weeks	allors V test 10 10 tase 83 -			
O Code U Issues iz 1	t Parrequests (U Actions III) Projects (U	Security IE insights	(Transferra)			
P master + P 2 branche	s Q6 taus	Sin to file Dode -	About			
🤫 telespazio-tim Merge bra	nch 'develop'	Félicarte en Aug 3 5 70 commite	The main goal of Sen2Like is to generate Sentinel-2 like harmonised/fused surface reflectances			
prismo4san2iika	Add prismo4san28ks preprocessor	3 montho ago	with higher periodicity by integrating			
senziliae	Updata %2+PDGS+MPC-L2MP-PPS	lavet month.	additional compatible optical mission sensors			
C README.md	Updata 52-POBS-MPC-L2HF-PFS	last month	A www.researcheste.cetincolect/Cas.N			
🗅 bowto.md	Reneme Tuturial.ind to howto.ind	2 years ago	almospheric-corrections			
E README.md			Normanized-products sublicity-tists			
Sen2Like			harmonised surface reflectances			
Generation of Analysis Re	ady Dataset - Sentinel-2 Mission category.		4r Activity			
About			⑦ 7 wetching			
The Sen2Like, [1] demon Copernicus programme (stration processor has been developed by ESA https://www.copernicus.eu().	in the framework of the EU	약 10 fonds Report repository			
The main goal of Sen2Li higher periodicity by inte	e is to generate Sentinel-2 like harmonised/fus grating additional compatible optical mission se	ed surface reflectances with ensors.	Releases a			
It is a contribution to on (facilitate biober level pro	ping worldwide initiatives (*NASA-HLS, Force, essing starting from harmonized data	CESBIO [2],[3]) undertook to	O VG.R.D (Lateret) on Aug 3			
and a subject series by the	and the second second second second second		+ D/releases			

· CICK

co-funded with

→ THE EUROPEAN SPACE AGENCY

Landsat-8 Level-2H Pilot Product

L2H L8 – 22/07/2022 (30m)

💳 📕 🚼 💳 🛶 📲 🏣 📰 📲 🔚 📰 👬 🔚 🔤 🛻 🚳 🛌 📲 🗮 ன 🚱

Landsat-8 Level-2F Pilot Product

EUROPEAN UNION

L2F L8 – 22/07/2022 (10m)

💳 🛃 📰 💳 🛶 💵 🔚 🔚 📰 📲 📰 🛶 🚳 🛌 📲 📰 🗰 😻 🛤 🛤 🗰 🖛 👘 🔸 The European space agency

S2 and Landsat-8 Level-2F Animation (NDVI)

PROGRAMME OF THE EUROPEAN UNION

22

eesa

co-funded with

opernicus

Work in Progress

💻 🔜 🛃 🚍 🚥 🕂 📲 🧮 🔚 📲 🔚 📲 🔚 🚛 🚳 🛌 📲 🚼 🖬 🖬 👘 🖓

S2 L2A Acquatic Reflectance Layer

Development of the algorithm for the generation of an Aquatic Reflectance Layer into the S2 L2A product is on-going

RATIONALE:

- Sentinel-2 data are used for water (quality) applications
 - Publications, commercial services
 - Copernicus Land Service (in-land water)
 - ✓ Copernicus Marine Service
- Sen2Cor performance over water
 - It does not meet uncertainty requirements for aquatic reflectances needed for quantitative water quality parameter retrieval (Chl-a, TSM, CDOM, ...)
- Conclusion:
 - Developing the algorithm for providing an aquatic reflectance layer as part of the Level-2A product using a dedicated water AC approach
 - Focus: Copernicus Services

End of the activity: Q4 2024

🗕 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🚱 🔽 📲 🚼 👘 🚱

S2 L2A Acquatic Reflectance Layer

Development of the algorithm for the generation of an **Aquatic Reflectance Layer** into the S2 L2A product is on-going

Algorithm	Pros
C2RCC (C2X)	Better results on Clear waters
ACOLITE-DFS	Good results for Turbid waters
POLYMER	Provides greater retrieval power in the most difficult circumstances (sunglint, highly absorbing waters)

DGGS (Discrete Global Grid System)

- Need to have a **unified global grid** which **minimizes geometric distortions**.
- Need to merge data from different sensors in a **global consistent geometry**.
- Need to explore **innovative approaches** to organize, store, manage and analyze EO data.
- **DGGS** can offer a new way for geospatial information to be handled in a manner that more accurately reflects the Earth.
- Feasibility Study for assessing the usage of **DGGS** (Discrete Global Grid System) for Sentinel-2 started in Spring 2022.
- A set of DGGS candidates for Sentinel-2 has been assessed considering the following key aspects: radiometry preservation, geometric distortions, discrete resolution levels, data retrieval efficiency, software support, etc.
- A Proof of Concept demonstrator is currently under evaluation (Jupiter Notebooks); \succ
- It would explore H3 and rHEALPix \geq and published as open-source tool on GitHub.

B02 on rHEALPix with Resolution 10~100m

→ THE EUROPEAN SPACE AGENCY

L1C Radiometric Uncertainty Tool (RUT): <u>https://github.com/senbox-org/snap-rut</u> (old version)

- Update of the tool in order to ingest the new format of S2 L1C product is work in progress (i.e., from PB 04.00 onwards).
- Preparation of the L1C RUT ATBD, User Manual and roadmap for future improvements

L2A RUT (v1.0.0) released on github: <u>https://github.com/gorronyo/S2-L2A-RUT</u>

• The release includes a brief user-guide

co-funded with

PROGRAMME OF THE

EUROPEAN UNION

S2 L1C Evolutions – Under Consideration

opernicus

A number of potential evolutions for the L1C product has been studied by the MPC and are currently under evaluation by ESA:

- o improvement of missing instrument source packets tracking (% for band) in the S2 metadata;
- reporting of additional information in the S2 metadata concerning the used DEM (e.g. Copernicus DEM, DEM resolution, DEM version, DOI, etc.);
- o improvement of the pixel-dependent cross-talk correction algorithm.

S2 L2A Evolutions – Under Consideration

opernicus

A number of potential evolutions for the L2A product has been studied by the MPC and are currently under evaluation by ESA:

- reading of the missing packets from L1C Tile metadata;
- o reporting of additional information in the S2 metadata concerning the used DEM;
- o replacement of "dark pixels" with class name "cast shadows" in the Scene Classification Layer;
- o handling of « NA » for Aerosol Optical Thickness (AOT) retrieval in the L2A quality report in the product metadata;
- o extension of "No Data" area of 1 pixel on the border of the swath;
- o mitigation of negative reflectance values at the edge of the swath (due to overcorrection of the adjacency algorithm).

S2 Collection-1

The Processing Baseline identifier 05.00 tags every Sentinel-2 Collection-1 product generated with the on-going reprocessing activity.

PROGRAMME OF THE

What's new in Collection-1

- ✓ Improved Geometric Performance: Geometric Refinement using the GRI and usage of the 30m Copernicus Digital Elevation Model (DEM)
- ✓ Harmonized radiometry with alignment of S2B to S2A
- Radiometric and Geometric Calibration Update: Optimization of the applicability along-time of the successive radiometric and geometric calibrations
- Quality Mask in raster format and improved masks for radiometric saturation
- ✓ **Improved L2A processing algorithms** for scene classification and surface reflectance
- Identification of defective pixels from missing instrument source packets in the L2A Scene Classification layer
- Compliance with the CEOS Analysis Ready Data (CEOS ARD) specifications at Threshold level of the S2 Level-2A surface reflectance product

co-funded with

→ THE EUROPEAN SPACE AGENCY

S2 Collection-1 Availability: Status

All historical data in the period spanning from the Sentinel-2A satellite launch back in **2015 until December 2021** are planned to be reprocessed by end of Q1 2024.

A dedicated **S2 Collection-1 Availability Status webpage on Sentinel Online** is periodically updated that reports about the reprocessed dataset and reprocessing status.

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2msi/copernicus-sentinel-2-collection-1-availability-status

Distribution partners:		
	https://creodias.eu	
ONDA	https://www.onda-dias.eu	
	https://mundiwebservices.com	

Updated availability by sensing time period ^(*)	Sentinel-2A	Sentinel-2B
Published	Up to October 2020	Up to October 2020
Next period in list	September-August 2020 then continuing in reverse chronological order of sensing time	September-August 2020 then continuing in reverse chronological order of sensing time

Last updated: 30/08/2023

31

(*) The general availability figures reported refer to the readiness of the Collection-1 Level-1C and Level-2A products for downstream distribution at the DIAS(es). The actual products availability in the DIAS inventories may temporarily differ considering the time to ingest the products in the respective DIAS repositories.

co-funded with

Parallel Cal/Val Activities

ESA UNCLASSIFIED - For ESA Official Use Only

┥

+

*

32

fiducial reference measurements for vegetation

PROGRAMME OF THE EUROPEAN UNION

opernicus

FRM4VEG is the ESA-founded project aiming at applying the FRM concept to in-situ measurements of the several land products ESA distributes (surface reflectance, the fraction of absorbed photosynthetically active radiation (FAPAR), canopy chlorophyll content, etc.).

Documents and **FRM Data** can be found on the FRM4Veg website:

https://frm4veg.org/

→ THE EUROPEAN SPACE AGENCY

SRIX4Veg (1/2)

SRIX4Veg = Surface Reflectance Inter-comparison eXercise for Vegetation

to ensure consensus on a Surface Reflectance Validation Protocol using drones

Requirements for participation:

UAV-mounted hyperspectral imagers capable of measuring 400 – 1000 nm contiguously; <= 10 nm spectral resolution.

co-funded with

opernic

eesa

PROGRAMME OF THE

SRIX4Veg (2/2)

PROGRAMME OF THE EUROPEAN UNION

opernicus

Contribute towards global community-agreed guidelines, protocols and procedures for <u>UAV-based</u> surface reflectance product validation!

Project partners:

Universidad de

UCLM Castilla-La Mancha

https://frm4veg.org/srix4veg/

→ THE EUROPEAN SPACE AGENCY

35

Cal/Val Park (1/2)

- Dedicated to VHR and HR optical missions;
- Open to both multi-spectral and hyperspectral missions;
- For both TOA radiance and reflectance and BOA reflectance;
- Open to be used by both the "institutional space" and the "commercial/new space";
- Common "playground" to test and run new cal/val methodologies, instruments, and initiatives;
- Open to include temporary and long-term instrumentation and initiatives;
- Scalable (as far as possible) to accommodate new needs and new types of EO missions that may come in the next years;
- Building on already existing cal/val technologies AND new technologies and methods;
- ✓ Able to support the ever growing European and international EO industrial ecosystem;
- Multi-Agency joint effort;
- ✓ Synergetic approach not to duplicate efforts (and budgets).

The "Cal/Val Park" concept is under definition phase. Phase-1 starting in Q1 2023.

co-funded with

Discussions are on-going for a joint ESA-ASI effort (interest from other space agencies and institutions to be investigated).

III =

PROGRAMME OF THE

= **■ = = + ■ = = = = = = = = ● = = = = ● ● ■ ■ ■ = = = = ■ ● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ● →** THE EUROPEAN SPACE AGENCY

Cal/Val Park (2/2)

PROGRAMME OF THE EUROPEAN UNION

1st Cal/Val Park User Consultation Workshop on 2nd-3rd October 2023 (online)

S2VT Agenda

HE OPERAICUS co-funded with

• Lunch: S2VT Participants will have a dedicated area in the ESA-ESRIN Canteen (right side area, before the garden)

PROGRAMME OF THE EUROPEAN UNION

ODEMICUS co-funded with

· eesa

- **<u>Coffe Breaks</u>**: in the **James Cook room** (turn left when exiting the meeting room)
- **<u>Posters</u>**: in the **James Cook room** (turn left when exiting the meeting room)
- Ice-Breaker: in the Old Reception (just in front of the meeting room)
- **Taxi**: ask at the meeting Reception
- **ESA-ESRIN bus** freely made available for the S2VT participants for the trip Frascati-ESRIN (back and forth)

Thank you for your attention

&

Enjoy the 6th S2VT Meeting

40

💻 🔜 🛃 🔚 🔤 🛶 📲 🔚 🔄 📲 🔚 🚛 🚱 🛌 🖓 🛌 📲 🔚 🔤 👘 🖓 📩 🖬