

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

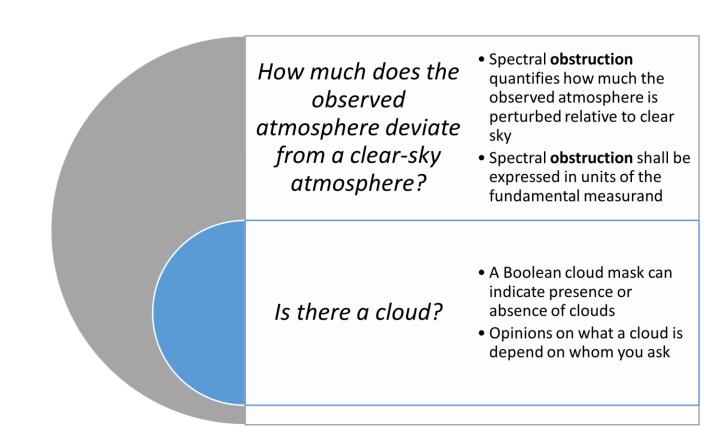
Obstruction — an all-purpose cloud masking concept in response to manifold user requirements

R. Quast¹, C. Brockmann¹, J. Wevers¹, R. Preusker², A. Walther², P. Litvinov³, C. Matar³, C. Chen³, J. Chimot⁴, L. Spezzi⁴, B. Fougnie⁴, R. Lang⁴, H. Bauch⁴

1 Brockmann Consult GmbH, ² Spectralearth GmbH, ³ GRASP SAS, ⁴ EUMETSAT

ESA UNCLASSIFIED - For ESA Official L

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



THE IDEA (2/14)

- Reconsider the problem of cloud masking from the perspective of physics
- Reconsider the problem of cloud masking from the perspective of retrieval algorithms and applications
- Exploit possible synergies from S3 OLCI and SLSTR

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

OVERVIEW (3/14)

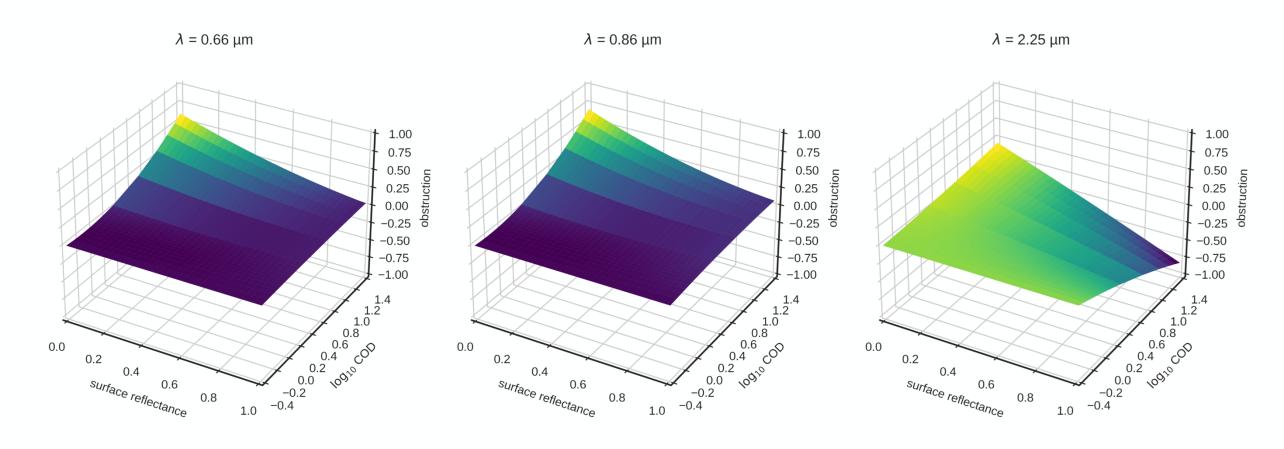
- 1. What is obstruction?
- 2. How do we retrieve obstruction?
- 3. How would you use it?
- 4. How does obstruction compare to existing S3 cloud masks?
- 5. Future roadmap

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

WHAT IS OBSTRUCTION? (4/14)

- Obstruction quantifies how much the presence of a cloud perturbs a TOA signal in comparison to the (assumed) clear sky situation
- Obstruction is a spectro-radiometric quantity
- We express obstruction in units of TOA spectral reflectance (or brightness temperature)

$$\delta \rho_{\lambda}^{t} = \underbrace{\rho_{\lambda}^{t}(\text{COD}, r_{\text{eff}}, \text{CTH}, \rho_{\lambda}^{s}, ...)}_{\text{simulated obs.}} - \underbrace{\rho_{\lambda}^{t}(0, r_{\text{eff}}, \text{CTH}, \rho_{\lambda}^{s}, ...)}_{\text{assumed clear sky obs.}}$$



WHAT IS OBSTRUCTION? (5/14)

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

HOW DO WE RETRIEVE OBSTRUCTION? (6/14)

- We use MODIS WSA MCD43GF dataset to obtain an estimate of surface spectral reflectance and its variability
- We derive an initial guess of the cloudeffective state from existing cloud tests

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

- We use an OE framework to retrieve cloudeffective state variables and uncertainties from OLCI and SLSTR radiometry
- We compute TOA spectral reflectance for the retrieved state and for the assumed clear-sky state (for different wavebands)
- The difference between both is obstruction

$$x = \underbrace{\text{(COD, } r_{\text{eff}}, \text{CTH)}}_{\text{cloud state}}$$

$$J(x) = \underbrace{J^{\text{OLC}}(x) + J^{\text{SLS}}(x)}_{\text{synergy term}} + \underbrace{\frac{1}{2}(x - \widehat{x})^{\text{T}}U_x^{-1}(x - \widehat{x})}_{\text{prior term}}$$

$$\underbrace{J^{\text{ins}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{F}^{\text{T}}(\boldsymbol{x}, \boldsymbol{\rho}^{\text{s}}, \boldsymbol{\rho}^{\text{t}}) \boldsymbol{U}_{\boldsymbol{F}}^{-1} \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{\rho}^{\text{s}}, \boldsymbol{\rho}^{\text{t}})}_{\text{single-instrument term}}$$

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

HOW WOULD YOU USE IT? (7/14)

- You want to know how much your surface retrieval is disturbed by a cloud?
- You use obstruction to compute TOA
 reflectance (or brightness temperature) under
 assumed clear-sky conditions from the
 observed signal
- Compute the difference between your actual and the assumed clear-sky retrieval
- You decide if your retrieval is significantly disturbed by a cloud or not
- You do not need to conduct RT simulations yourself

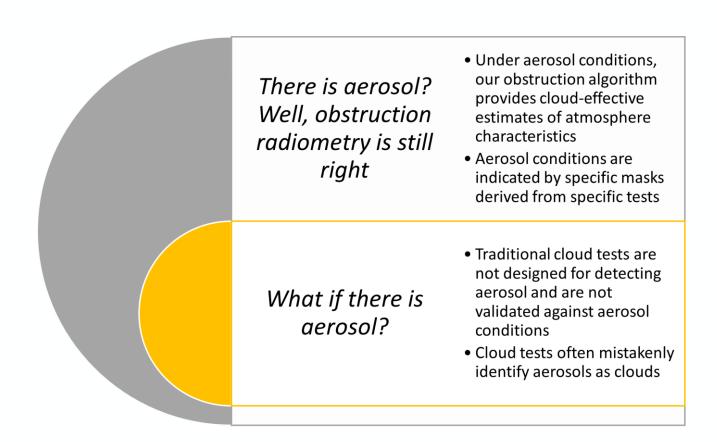
How much does the (perturbed) atmosphere perturb my surface retrieval?

- Spectral obstruction enables estimating the value of the fundamental measurand under clear-sky conditions
- Compare actual and assumed clear-sky retrievals to evaluate the perturbation

Is there a cloud which affects my surface retrieval?

- An application-specific Boolean cloud mask can indicate presence or absence of relevant clouds
- Each application requires a different Boolean cloud mask

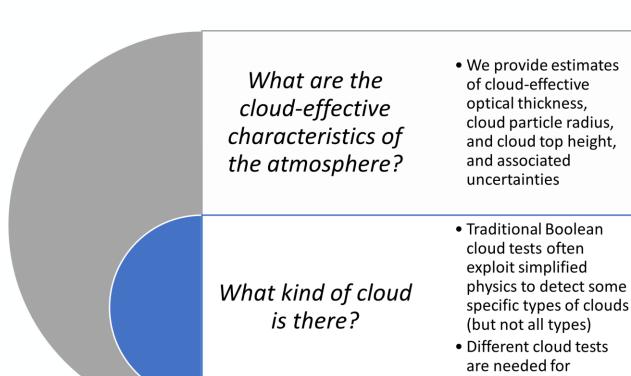
18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



HOW WOULD YOU USE IT? (8/14)

- If there is aerosol, obstruction still quantifies the radiometric perturbation quite right
- Compute the difference between your actual and the assumed clear-sky retrieval
- You decide if your retrieval is significantly disturbed or not
- You are looking for aerosol events? We provide dedicated aerosol masks derived from specific tests

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



different cloud types

HOW WOULD YOU USE IT? (9/14)

- You are looking for certain kinds of clouds?
- You may use spectral obstruction to infer the kind of cloud (e.g., cirrus)
- You may use the retrieved cloud-effective state parameters and associated uncertainties to infer the kind of cloud
- You may use our cloud masks based on selected COD thresholds

HOW WOULD YOU USE IT? (10/14)

- You are planning a new sensor and need a new cloud masking concept?
- You may adapt and adopt our obstruction concept because you do not need new physics

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

 We adapted our S3 obstruction retrieval algorithm to the Cloud Imager (CLIM) of the upcoming European CO2 mission (CO2M) allowing us to retrieve approximate 'cloud visibility height' (a simplified CTH)

- Our obstruction algorithm is based on streamlined radiative transfer physics
- You need to recalculate lookup tables suitable for your instrument
- You do not need to tune parameters (there are none)

You built a new sensor. Do you need a new cloud masking concept?

- Traditional cloud tests are tailored to the facilities of the instrument
- You might reuse existing concepts
- You need to tune cloud test parameters to the instrument

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

HOW WOULD YOU CREATE A MASK? (11/14)

- Take the obstruction value (provided by our algorithm for selected wavebands)
- Apply a custom threshold to the obstruction value. Apply different thresholds over land and over water
- Obstruction (absolute) values greater than your custom threshold indicate a cloud
- Masks based on default thresholds are generated by our algorithm (see Table)

Waveband	Instrument	Obstruction is expressed	Threshold value applied over			
			Land	Water		
443 nm	– OLCI		0.10	0.10		
754 nm	- OLCI	relative to TOA reflectance	0.10	0.50		
554 nm		$rac{\delta ho_{\lambda}^{ extsf{t}}}{ ho_{\lambda}^{ extsf{t}}}$	0.10	0.10		
868 nm	_	$ ho_\lambda^{ au}$	0.10	0.50		
1.61 μm	SLSTR		0.05	0.95		
10.8 μm	_	as brightness temperature difference	3.50	0.75		
1.37 μm		as TOA reflectance difference	0.05	0.05		

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

HOW DO EXISTING S3 CLOUD MASKS PERFORM? (12/14)

			IDE	LCI PIX DUD	PROBABILIS	STR STIC/BAYES ERATE	SLS SUMN CLO	MARY	SLSTR THIN CIRRUS		SLSTR GROSS CLOUD		SLSTR 1.37 MM THRESHOLD	
		SCORE	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER
	>	POD	78.4	72.0	88.5	93.1	85.9	96.4	43.4	28.1	36.0	57.5	53.3	35.3
	Producer´s view	FNR	21.6	28.0	11.5	6.9	14.1	3.6	56.6	71.9	64.0	42.5	46.7	64.7
	oduce	FAR	12.2	4.2	27.6	30.8	26.9	22.2	6.5	1.1	1.0	11.5	1.9	0.1
'	<u>-</u>	SPC	87.8	95.8	72.4	69.2	73.1	77.8	93.5	98.9	99.0	88.5	98.1	99.9
		PPV	88.9	95.3	79.9	78.3	79.8	83.8	89.2	96.7	97.8	85.7	97.1	99.8
	User´s view	FDR	11.1	4.7	20.1	21.7	20.2	16.2	10.8	3.3	2.2	14.3	2.9	0.2
	User	FOR	23.4	25.9	16.4	10.6	19.3	5.2	42.9	46.4	44.5	36.4	37.1	43.4
		NPV	76.6	74.1	83.6	89.4	80.7	94.8	57.1	53.6	55.5	63.6	62.9	56.6
		ACC	82.6	82.8	81.3	82.2	80.2	87.9	65.7	60.4	64.1	71.7	73.3	64.8
-		ACB	83.1	83.9	80.5	81.2	79.5	87.1	68.5	63.5	67.5	73.0	75.7	67.6

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

HOW DO OBSTRUCTION-BASED MASKS PERFORM? (13/14)

		443	t. MASK B NM LCI)	753	OBSTR. MASK OBSTR. MASK OBSTR. MASK 753 NM 554 NM 868 NM (OLCI) (SLSTR) (SLSTR)		NM	OBSTR. MASK 1.61 MM (SLSTR)		OBSTR. MASK TIR (SLSTR)			
	SCORE	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER	LAND	WATER
*	POD	90.3	90.2	87.5	91.4	89.7	90.8	87.3	92.3	89.0	87.0	88.4	89.8
Producer's view	FNR	9.7	9.8	12.5	8.6	10.3	9.2	12.7	7.7	11.0	13.0	11.6	10.2
eonpo.	FAR	14.6	10.0	11.4	9.0	12.7	8.9	12.5	10.5	15.0	7.9	16.8	11.6
A	SPC	85.4	90.0	88.6	91.0	87.3	91.1	88.5	89.5	85.0	92.1	83.2	88.4
	PPV	88.0	91.0	90.1	91.9	89.3	92.0	90.0	90.8	87.5	92.5	86.2	89.7
User's view	FDR	12.0	9.0	9.9	9.1	10.7	8.0	10.0	9.2	12.5	7.5	13.8	10.3
User	FOR	11.9	9.7	14.3	9.6	12.2	10.1	14.5	8.7	13.3	13.7	14.2	11.4
	NPV	88.1	90.3	85.7	90.4	87.8	89.9	85.5	91.3	86.7	86.3	85.8	88.6
	ACC	88.1	90.7	88.0	91.2	88.6	91.0	87.9	91.0	87.1	89.4	86.0	89.2
•	ACB	87.9	90.1	88.1	91.2	88.5	90.9	87.9	90.9	87.0	89.6	85.8	89.5

VALIDATION SUMMARY (14/14)

Main achievements

- Derived cloud optical depth and spectral obstruction resolve cloud structure mostly well
- Obstruction-based masks perform as well as or better than existing S3 cloud masks on the pixel validation dataset
- Obstruction-based masks mitigate some problems of existing S3 cloud masks (broken clouds, systematic overscreening or underscreening of clouds)
- Aerosol masks recognize Sahara dust outbreaks, smog over Yellow Sea, volcanic aerosol, and burning biomass

Main deficiencies

- Accuracy of obstruction and the performance of cloud detection depend on accuracy of surface reflectance background map
- Depending on errors in the background map, some typical cloud masking problems remain (snow and ice, coastlines)
- Likewise, agricultural areas, topographic variation, dry-fallen lakes can be misidentified as cloud
- Aerosol masks are too sensitive to sun-glint and to low optical depth of clouds and aerosols

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

ROADMAP TOWARD OPERATIONAL IMPLEMENTATION

- Targeting 2025 (±1 year) EUMETSAT is preparing a suite of cloud products from S3, including CTP derived from OLCI (ITT OCTPO2) and the obstruction concept presented in this talk (ITT S3-SYN-CM). Mandated by member state NWP services and Copernicus
- At present, prototype versions of these algorithms are validated, available at EUMETSAT, and running off-line for further internal analysis, and scientific and software optimization
- Aim to improve both algorithms by using a compatible pre-calculated Sentinel-3
 Land Surface Reflectivity auxiliary dataset (ITT S3 LSR won by GRASP SAS and BC as partner) within the next 18 months
- Additional necessary developments are under internal discussion. To be announced in near future
- Major lessons from the obstruction study are being transferred to the CO2M L2 cloud mask product from the CLIM sensor (with likely feedback into S3 LSR)

S3-SYN-CM web page

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

EXPLANATION OF STATISTICS

- A mask is termed cloud-conservative if the cloud false alarm rate (FAR) is low
- A mask is termed clear-conservative if the cloud FAR is high

	Score	Name	Remark			
Producer's view	POD	Probability of detection (or producer's accuracy cloud)	High for a clear-conservative mask			
	FNR	False negative rate	Complement of POD			
roduce	FAR	False alarm rate	Complement of SPC			
- B	SPC	Specificity (or producer's accuracy clear)	High for a cloud-conservative mask			
User´s view	PPV	Positive predictive value (or user's accuracy cloud)	High for a cloud-conservative mask			
	FDR	False discovery rate	Complement of PPV			
	FOR	False omission rate	Complement of NPV			
	NPV	Negative predictive value (or user's accuracy clear)	High for a clear-conservative mask			
	ACC	Accuracy	Rate of correct predictions			
	ACB	Accuracy, balanced	Rate of correct predictions, robust against imbalanced datasets			