Mission Classification and Assurance for University-based Lean Satellite

Mengu Cho^{a,b}, Yoshihiro Tsuruda^c, Kikuko Miyata^d, Kazumi Masuda^e, Yukihito Kitazawa^f, Toshinori Kuwahara^g

^a Laboratory of Lean Satellite Enterprises and In-orbit Experiments, Kyushu Institute of Technology, Japan

- ^b Chiba Institute of Technology, Japan
- ° Teikyo University, Japan
- ^d Meijo University, Japan
- ^e Shizuoka Institute of Science and Technology, Japan
- ^f Japan Aerospace Exploration Agency, Japan
- ^g Tohoku University, Japan

June 2024, TRISMAC @ESA-ESRIN

University satellite projects in Japan

- UNISEC: University Space Engineering Consortium
- UNISEC-Japan consists of
 - 56 laboratories/groups from 39 universities
 - 805 student members
 - 240 individual members
 - 24 corporate supporters (based on August 2023)
 - alumni members
- UNISEC-Japan members maintain cooperative relationships in conducting practical space development and utilization.

University satellite projects in Japan

University Space Engineering Consortium

Lean Satellite

- University satellite is categorized as "Lean Satellite"
 - A satellite that utilizes non-traditional, risk-taking development and management approaches – with the aim to provide the satellite value to the customer and/or the stakeholder at low-cost and with short time to realize the satellite mission[1].
 - Defines small/micro/nano/pico satellites by the philosophy, not by mass/size.
- Lean satellite tolerates a risk, but still needs to achieve the mission success as much as possible
 - "Failure is not an option" nor "Failure is accepted"
- [1] "Definition and Requirements of Small Satellites Seeking Low-Cost and Fast-Delivery", Edited by Mengu Cho and Filippo Graziani, International Academy of Astronautics, 2017, Code ISBN/EAN IAA: 978-2-917761-59-5

UNISEC's Lean Satellite Mission Assurance Activities

- In 2020, members of UNISEC-Japan utilized the time that suddenly became available due to the pandemic in
 - Remote sessions on lessons learned from university satellite projects in UNISEC (University Space Engineering Consortium) JAPAN in 2020
 - Survey on the lessons learned of mission assurance
 - Sponsored by JAXA
 - Report (439 pages!) on
 - Analysis about the success and failure cases and their causes.
 - Extraction of requirements for mission assurance
 - Sorry, Japanese only

UNISEC's Lean Satellite Mission Assurance Activities

- Following the activities in 2020, in 2021 UNISEC members worked on
 - Mission assurance handbook for university-based lean satellites
 - Further analysis of the failure cause
 - Based on the activities, "Mission Assurance Handbook for the University-built Lean Satellite" was published in March 2022.
 - Currently 3rd version (published in March 2023)

Mission Assurance Handbook for the University-built Lean Satellite

- Target satellite projects at universities and polytechniccolleges in Japan
 - Not only the first project of the universities, but also the second and later projects
- Summary of points to be kept in mind of faculty members and students to improve the mission success rate
- Organized in the order of project life-cycle
- Published and available online
- Many of the content is still applicable to satellite projects in new space companies and/or non-Japanese organizations

Handbook download

Use your smartphone and capture the QR code below

Contents

- 1. Introduction
- 2. Project management (9)
- 3. Mission definition (4)
- 4. Conceptual design (4)
- 5. Detail design (10)
- 6. Production (3)
- 7. Testing (15)
- 8. Operation (3)
- 9. Post-operation (3)
- 10. Sustainability of university satellite program (4)

If you missed the last page

Ordering according to project life-cycle

2.5 Project management (Compliance with safety requirements)

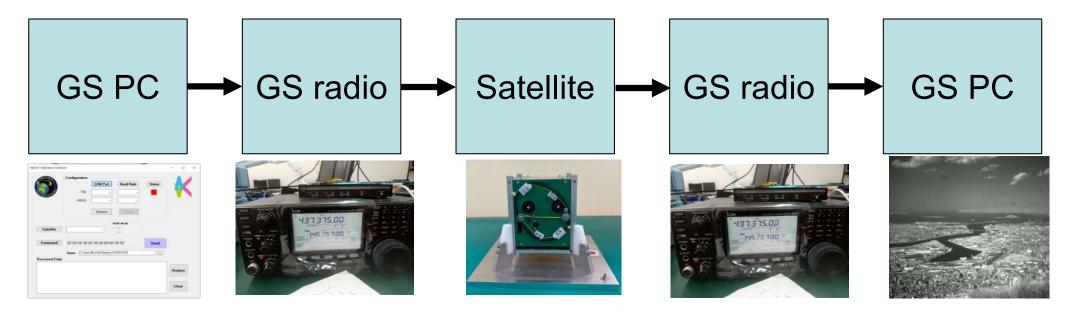
- Non-compliance with the safety requirement may lead to serious delay of the schedule
- In the worst case, the satellite is not launched
 - Dummy mass will go instead of your satellite
- At the end of conceptual design and detailed design, list-up the issues related to safety requirements and confirm with the launch provider
- Agree with the launch provider on the safety requirement verification methods that can be done with the minimum effort
 - The safety verification is necessary, but non-value adding activity
 - Do more value-adding activities such as mission assurance

3.1 Mission definition phase (feasibility)

- Know the limits when you define the missions
 - Team talents and skills
 - Budget
- A professor is not the God
 - Doesn't know everything to judge the mission feasibility
 - Open mind to suggestion/comments/assistance by others
- 3-axis stabilization from the first satellite?
- High-speed communication by mechanical students?

7.1 Testing phase (Electromagnetic Compatibility Test)

- Because of cold launch, EMC with launchers and other satellites are not important
- Live with **self-generated noise**
- Verify that the communication link has enough margin
 - Uplink signal level is much higher than the satellitegenerated noise floor
 - Confirm before moving to FM



Sensitivity test for uplink success in a shield box

7.2 Testing phase (End-to-End mission test)

- Verify the basic data flow of the main mission
 - Command uplink
 - Satellite mission
 - Data downlink
 - Confirmation of data on GS PC
- Make the details, after confirming that the basic mission can be done

7.4 Testing phase (System functional test)

- Move to FM assembly as soon as FM components are delivered and start the function tests as an integrated system
- Check the consistency of data sent from the satellite
- Do not move to the environment tests (e.g. vibration, thermal vacuum), before you solve problems

FM system function test

Other mission assurance activities

- 1. Mission classification
- 2. CubeSat salon

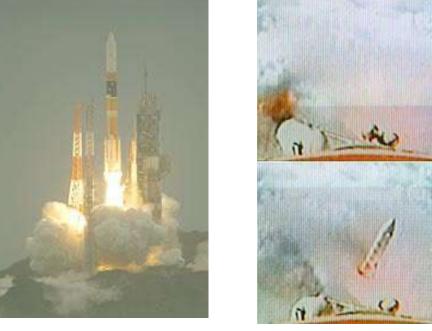
Mission classification and mission readiness

- For a given mission, stakeholders expect a certain mission success rate
 - More expectation, more funding (or more funding, more expectation)
- Classify satellite missions based on the expected mission success rate
- The technical level maturity of the satellite developer must meet the expected mission success rate
 - "University A has the technical level good enough to do *** mission"
 - "University B is too early to do *** mission"
- Roadmap to raise the mission success rate (i.e., mission readiness) of university lean satellite projects
 - Use the doable mission as an index
 - Stakeholders can trust the developer and provide the funding to do the mission

Mission classified		Contents	Expected success rate (%)
7	National security project	Provide data to national security (defense) projects	95
6	Civil project	Provide data to national civil (e.g. weather) projects	90
5	Science	State-of-art science observation and deep space exploration Papers accepted by prestigious journals, e.g. <i>Nature</i> .	80
4	Constellation pathfinder	Constellation pathfinder (in-orbit prototype) for space business	70
3	Outsourcing	 A satellite built by outsourcing with external funding (a)Outreach purpose (public relations, etc.) (b)Orbit demonstration of technology possessed by companies (mainly manufacturing industries) (c)Orbit demonstration of mission feasibility of a new idea of space application by companies (d)Orbit demonstration of scientific payload requested by science people 	60
2	University research	A satellite built for research purpose. The stakeholder is the university itself, no external stakeholder.	50
1	University education	A satellite built for education purpose. The stakeholder is the university itself. The funding is mostly provided by the university alone.	25

Mission classified		lission classified	Contents	Expected success rate (%)	
	1	National security project	Provide data to national security (defense) projects	95	

<page-header><complex-block><image>


National Geospatial-Intelligence Agency

https://spaceflightnow.com/news/n1109/19nrodeclassified/

Cannot fail, but 100% is not expected Launch may fail anyway

Mission classified	Contents	Expected success rate (%)
7 National security project	Provide data to national security (defense) projects	95

From Asahi Shinbun

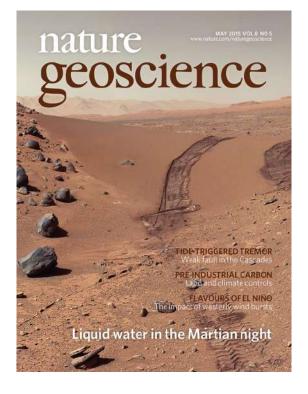
Failure of H2A/F6 lost 2 military satellites

Ν	lission classified	Contents	Expected success rate (%)
6	Civil project	Provide data to national civil (e.g. weather) projects	90

Credit: Japan Meteorological Agency

Important to people on the ground. It may fail. Redundancy prepared if necessary.

N	Aission classified	Contents	Expected success rate (%)
6	Civil project	Provide data to national civil (e.g. weather) projects	90



In Japan, 90% success rate since 1995

Ν	lission classified	Contents	Expected success rate (%)
5	INCIANCA	State-of-art science observation and deep space exploration Papers accepted by prestigious journals, e.g. <i>Nature</i> .	80

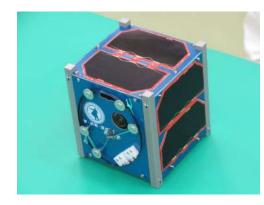
Although they are not on the cover yet, many CubeSat missions are now published in top-ranking journals. Some of them are university satellites.

Ν	lission classified	Contents	Expected success rate (%)
5		State-of-art science observation and deep space exploration Papers accepted by prestigious journals, e.g. <i>Nature</i> .	80

In Japan, 84% success rate for national science missions

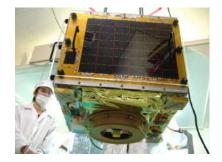
N	lission classified	Contents	Expected success rate (%)
4	Constellation pathfinder	Constellation pathfinder (in-orbit prototype) for space business	70

https://synspective.com/jp/information/2023/strix_alpha_mission_completed/



https://optronics-media.com/news/20141111/27782/

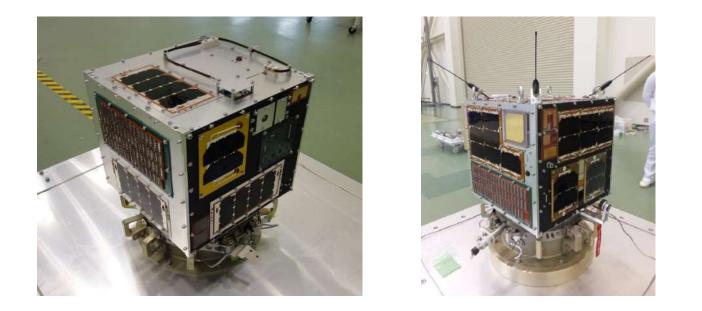
Many constellation pathfinders are built by start-up companies born from university satellites



Ν	lission classified	Contents	Expected success rate (%)
3	Outsourcing	 A satellite built by outsourcing with external funding (a)Outreach purpose (public relations, etc.) (b)Orbit demonstration of technology possessed by companies (mainly manufacturing industries) (c)Orbit demonstration of mission feasibility of a new idea of space application by companies (d)Orbit demonstration of scientific payload requested by science people 	60

©Kyutech/Panasonic

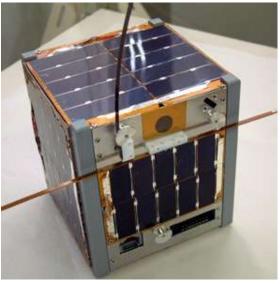
©Kyutech/Micro-orbiter


©Tohoku University

Many universities do the outsourcing missions. Some works, but some do not work.

©Clark Memorial International **High School**

Mission classified		Contents	Expected success rate (%)
2		A satellite built for research purpose. The stakeholder is the university itself, no external stakeholder.	50


Some works, but some do not work

	Mission classified	Contents	Expected success rate (%)
1	•	A satellite built for education purpose. The stakeholder is the university itself. The funding is mostly provided by the university alone.	25

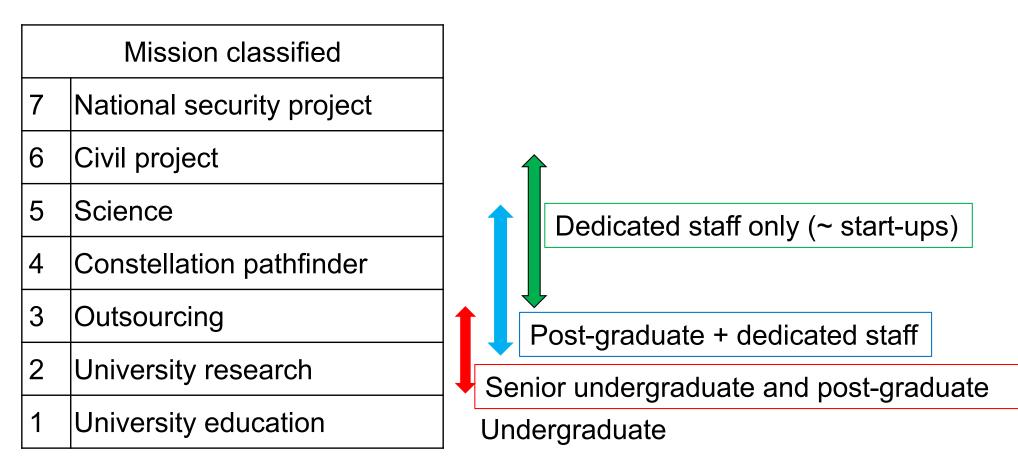
2002

©University of Tokyo

2024

©Chiba Institute of Technology

Sometimes, it ends up with DoA (Dead-on-Arrival). However, do not forget that these satellites often work

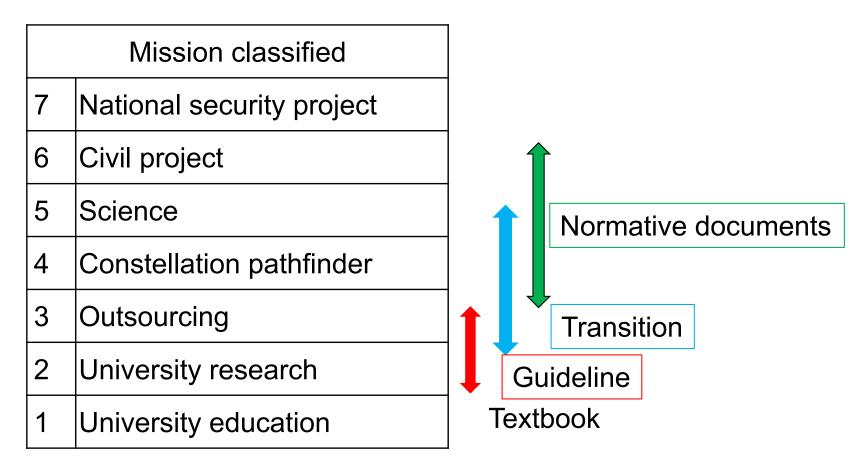


What makes university satellites succeed in their missions?

- Experience
- Motivation
- Budget
- Talent
- Skill
- Facility
- Do rigorous reliability and quality managements contribute to the mission success?
 - Depends on the team levels
 - 1. Undergraduate
 - 2. Senior undergraduate and post-graduate
 - 3. Post-graduate + dedicated staff
 - 4. Dedicated staff only (similar to start-ups)

Mission classification and university team levels

- Rigorous reliability and quality managements based on standard documents work mostly for "dedicated staff only" case.
- Perhaps for "Post-graduate + dedicated staff" case.
- Impossible for the other two



Normative documents for reliability and quality managements for university satellites?

- Teams need to be educated first
 - Understand the benefits and needs of the documents
- Some (or many) do not stay for the entire project life cycle
 - Difficult to apply the documents consistently
- Textbook and guidelines are more suitable for the teams made of
 - 1. Undergraduate
 - 2. Senior undergraduate and post-graduate
- If dedicated staff stay throughout the entire life cycle
 - The benefits and needs of the documents understood already
 - Still needs the resource to educate the other team members
 - Experience dictates what documents should be adopted

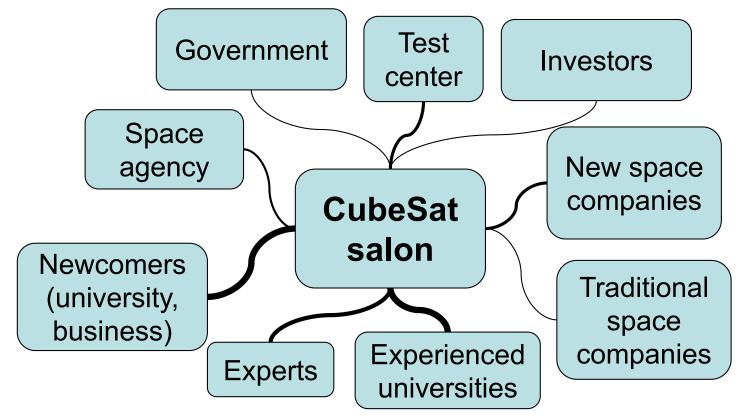
Mission classification and university team levels

- Normative documents for reliability and quality managements from mission level 3 and higher (when external stakeholders exist)
 - Tailoring of agency adopted documents (e.g. JERG, ECSS, etc.)?
 - Bottom-up approach based on best-practices and lessons learned?

Reliability and quality managements for lean satellites

- Satellite projects dealt by rigorous reliability and quality managements based on standard documents
 - Small risk tolerance margin
 - One of a kind
 - Involve many people who do not know each other
- Lean satellite projects
 - Large risk tolerance margin
 - Based on flight heritage of previous satellites
 - Small team who know each other
 - Decisions made based on *experience* (lessons learned & best practices), not based on documents
- Need to make the individual experiences to the shared *knowledge*
 - How do we collect experiences of various small projects?

CubeSat salon


- Newcomers (university and companies) need helps
- Advices by external reviewers are very effective at the mission definition phase
 - Mission planning
 - Mission feasibility
 - Optimum satellite bus selection for a given mission
 - System lifecycle planning
 - Introduction of helpers and collaborators
- A place to provide consultation for the newcomers
 - A very low barrier for knocking the door
 - CubeSat Salon
- Starting July 2024

Collect information for guideline and normative documents

CubeSat salon

- CubeSat salon can play the networking role
 - Connect between company-university, company-company, universityuniversity
 - Introduce universities and facilities that can assist throughout the system lifecycle
 - Sharing of lessons learned
- Assist to persuade the non-space company management to enter the space sector

Conclusion

- Collaboration between UNISEC-Japan and JAXA on mission assurance of university lean satellites with intensions of
 - Human resource development
 - Advancement of lean satellite missions
 - Promotion of new space sectors
 - Possible use of lean satellites for the national space program
 - Needs of standards in near future
- We seek information exchange with other countries, especially agencies, about how to promote the mission assurance of lean satellites

