

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

A new (validation) approach for systematic monitoring of the Sentinel-3 OLCI cloud mask using low-cost sky cameras

<u>Jan Wevers¹,</u> C. Brockmann¹, J. Scholze¹, A. Santamaria-Artigas², S. Skakun², E. Vermote³, F. Niro⁴

¹ Brockmann Consult GmbH, ² University of Maryland College Park, ³ NASA Goddard Space Flight Center, ⁴ SERCO c/o ESA-ESRIN

ESA UNCLASSIFIED - For ESA Official

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Overview of the talk

- Background
- Objective/Overview
- Validation site and methods preparation
- Validation results
- Current limitations & network extension
- Conclusion

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Background

- Validation of satellite-based cloud masks is commonly done by the algorithm developers themselves.
 - ➤ Non-independent validation
- A few attempts have been made to objectively inter-compare performances of satellite-based cloud masking algorithms (e.g., Skakun et al. 2021, Zekoll et al. 2021, Tarrio et al. 2020, Hammersson Sanchez et al. 2020, Chi & Zhang 2020).
- All these validations/inter-comparisons are based on different datasets, leading to variable results even if the same algorithm is analyzed.
 - This was shown during the Cloud Mask Intercomparison eXercise (CMIX)
- Most validation datasets are sensor dependent and don't allow cross-sensor validation of multi-sensor cloud detection algorithms.
- No validation dataset allows for operational constant QC of cloud mask performance.

Goal: An independent validation source for cloud masking algorithms is needed, which is sensor independent and allows operational QC usage

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Objective / Overview

- Objective: Define a standard (objective) method to monitor and validate the OLCI Level 2 cloud masking within the Optical Mission Performance Centre (OPT-MPC). To guarantee constant quality of the cloud screening and to provide quality indicators for routine quality assessment (QA).
- Work presented here started in the frame of ESA's Quality assurance framework for earth observation (QA4EO).
 - The objective was to analyse the usage of ground-based sky cameras (SC), as an independent validation source for satellite cloud masking algorithms.
 - The scope of this work was to prototype algorithms and methods to process sky camera data and compare them with satellite-based cloud masks.
 - A successful prototype was developed and tested based on Sentinel-2; Results presented at ESA's Living Planet.
 - Results are documented here: https://doi.org/10.5281/zenodo.6626712 and https://doi.org/10.5281/zenodo.6626802
- In the context of QA4EO and OPT-MPC the approach was adapted to be used with Sentinel-3 OLCI L2 data

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Validation site and methods preparation

Instrumentation setup

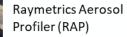
- A set of two cameras (stereo pair) was setup at La Sapienza University in Rome.
- The cameras use a / Omnivision OV564 view is 194 (horizo Distance between meters. Currently

Sky cameras are developed by University of Maryland & NASA

Skakun, S., Vermote, E. F., Santamaria-Artigas, A., Rountree, W. H., & Roger, J. C. (2021). An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253.

collecting data every minute between 08:00 and 14:00 UTC.

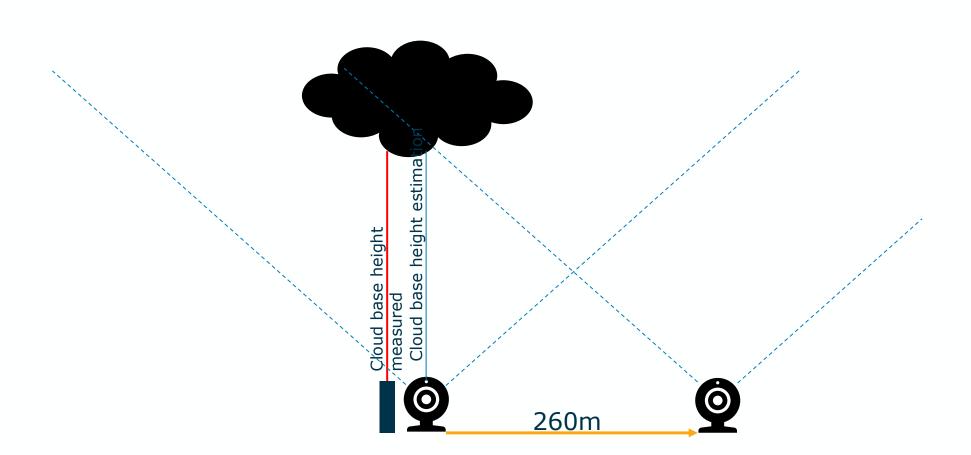
- Sky camera two (Fermi) is located approx. 20m apart from the ceilometer (RAP)
 - comparisons between the RAP and SC based cloud detection



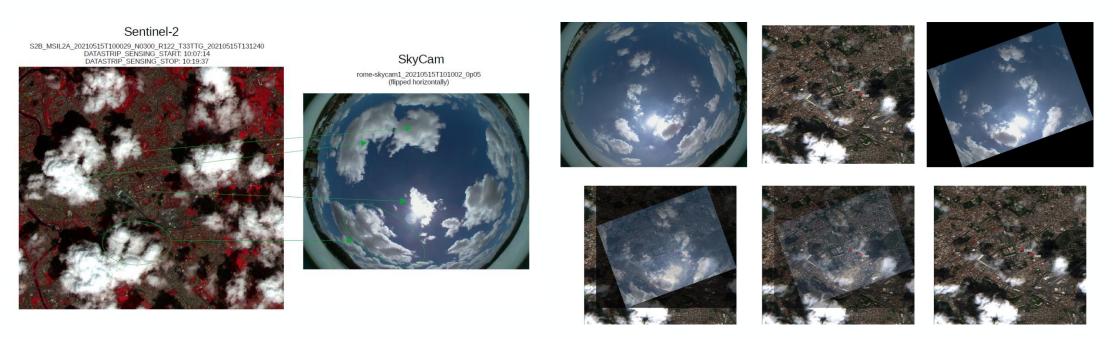
amera 1: Marconi

Sky Camera 2: Fermi

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy



SkyCam and RAP setup @La Sapienza



18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Pre-processing of sky camera data to better match the satellite observations

- Crop: Reduce geometric distortion (increasing outside of the center).
- Rotate: The SCs are installed looking a bit northwest.
- Flip: The SC is looking from the ground up and the satellite does the opposite.

Example comparing SC with Sentinel-2 data for better understanding of spatial relationships

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

ages to

images.

Finding an appropriate classification method

A few methods have been tested that have not led to required

accuracies.

- Simple threshold
- Otsu thresholdir
- Otsu thresholdir
- Implementing a improve the result
- Brightness index

Training of a randor

- 12 to 15 SC ima
- Polygons repres
- Inside these poly

• Overall, 11,100 Samples for Set and 27,500 Samples for Set and 27,500 Samples for Set and 20,500 Sam

Figure 15: Classification using Otsu threshold after Gaussia filtering

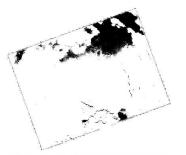


Figure 16: Classification using BI SI method from Letu et al. 202

Validation results for the RF classifier

Validation of the RF classifier shows high accuracy (93-96% OA)

SkyCam 1 manual classification vs. SkyCam 1 auto classification

Sky Camera 1 manual classification

1 automatic classification	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	30	2	32	93.8	6.2
	CLOUD	2	27	29	93.1	6.9
	Sum	32	29	61		
	PΑ	93.8	93.1		OA:	93.44
Sky Camera	E	6.2	6.9		BOA:	93.45

Scotts Pi: 0.868 Krippendorfs alpha: 0.869 Cohens kappa: 0.868

SkyCam 2 manual classification vs. SkyCam 2 auto classification
Sky Camera 2 manual classification

_	Sky Camera 2 mandar classification							
classification	Class	Clear	Cloud	Sum	U A	Е		
	CLEAR	38	1	39	97.4	2.6		
automatic	CLOUD	1	26	27	96.3	3.7		
Sky Camera 2 auto	Sum	39	27	66				
	PΑ	97.4	96.3		OA:	96.97		
	E	2.6	3.7		BOA:	96.85		

Scotts Pi: 0.937 Krippendorfs alpha: 0.937 Cohens kappa: 0.937

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Test validation for OLCI – automatic SC classification

- Sentinel-3 OLCI results between 01.01.2021 and 31.12.2021
- 282 matchups
- 1 OLCI pixel over SC site is validated against cloud fraction in window of SC
- SC cloud defined as 50% cloud cover in <u>500x500 pixel</u> window
- Comparable low OA 78% due to skewed reference
- Calculation of balanced overall accuracy (BOA) can correct for this: 82%
- These numbers are quite comparable with the validation results of OLCI PixBox validation (2021) over land surfaces

Sky Camera validation over Rome Using 2021 LFR data

SC 1 automatic classification vs. OLCI L2 LFR Cloud & Ambiguous & Margin
Sky Camera 1

	Class	Clear	Cloud	Sum	U A	E
OLCI L2 LFR	CLEAR	136	7	143	95.1	4.9
	CLOUD	53	86	139	61.9	38.1
	Sum	189	93	282		
	PΑ	72.0	92.5		OA:	78.72
	E	28.0	7.5		BOA:	82.25

Scotts Pi: 0.56 Krippendorfs alpha: 0.561 Cohens kappa: 0.572

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Comparing the test validation for OLCI against latest PixBox collection

- PixBox validation is based only on the neural network part of the L2 cloud screening
- BOA is quite comparable
- Skewed distribution of SC classification hinders comparison a bit
 - Rome is often cloud free
 - Tendencies still comparable

Sky Camera validation over Rome Using 2021 LFR data

SC 1 automatic classification vs. OLCI L2 LFR Cloud & Ambiguous
Sky Camera 1

	Class	Clear	Cloud	Sum	U A	Е
L2 LFR	CLEAR	164	16	180	91.1	8.9
	CLOUD	25	77	102	75.5	24.5
OLCI L2	Sum	189	93	282		
	PΑ	86.8	82.8		OA:	85.46
	E	13.2	17.2		BOA:	84.8

Scotts Pi: 0.678 Krippendorfs alpha: 0.679 Cohens kappa: 0.678

PixBox validation 2021 using 2018 data over land surfaces

OLCI A+B FR IdePix cloud val. - land surfaces

In-Situ Database

	Class	Clear	Cloud	Sum	U A	Е
OLCI FR IdePIX	CLEAR	3442	443	3885	88.6	11.4
	CLOUD	1039	3183	4222	75.4	24.6
	Sum	4481	3626	8107		
_	PΑ	76.8	87.8		OA:	81.72
	E	23.2	12.2		BOA:	82.3

Scotts Pi: 0.634 Krippendorfs alpha: 0.634 Cohens kappa: 0.635

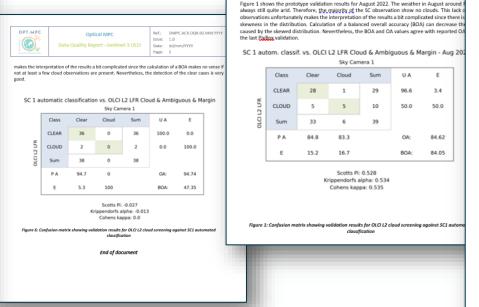
18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

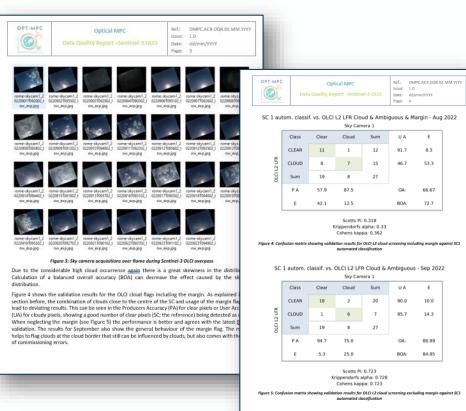
Current limitations

- Algorithm to remove lens distortion no implemented yet
- Best fitting window size needs to be defined
- Best method for integration of classification results within window needs to be defined
- Influence of cloud parallax between OLCI acquisition and sky camera acquisition needs to be analysed
 - Issue for HR sensors like S2
- More sites are required to provide globally representative results.

Network extension

- 5 additional sites (6 sites total)
 - Goddard Space Flight Center, USA
 - Park Falls, Wisconsin, USA
 - Valencia, Spain
 - Sao Paulo, Brazil
 - Princess Elisabeth Station, Antarctica




Current use within the OPT-MPC

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

- The prototype is currently used to provide QA numbers for the monthly Data Quality Reports
- Limited to the Rome site but will be extended to all six sites.

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Conclusion

- First prototype testing of validating OLCI cloud mask with SC shows quite comparable results
- The development is still in a prototype phase
- Currently only a few sites exist (six), and all are located over land surfaces
- The development of a complete network will take some time
- The SC approach can be used as a valuable source for routine monitoring of the cloud mask performance -> automated input to the monthly performance reports

Thank you for the attention!